aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--src/argaze/utils/tobii_stream_aruco_set_export.py346
1 files changed, 346 insertions, 0 deletions
diff --git a/src/argaze/utils/tobii_stream_aruco_set_export.py b/src/argaze/utils/tobii_stream_aruco_set_export.py
new file mode 100644
index 0000000..d93658f
--- /dev/null
+++ b/src/argaze/utils/tobii_stream_aruco_set_export.py
@@ -0,0 +1,346 @@
+#!/usr/bin/env python
+
+import argparse
+import os, json
+import math
+import threading
+
+from argaze import DataStructures
+from argaze import GazeFeatures
+from argaze.TobiiGlassesPro2 import *
+from argaze.ArUcoMarkers import *
+from argaze.AreaOfInterest import *
+from argaze.utils import MiscFeatures
+
+import cv2 as cv
+import numpy
+
+def make_rotation_matrix(x, y, z):
+
+ # Create rotation matrix around x axis
+ c = numpy.cos(numpy.deg2rad(x))
+ s = numpy.sin(numpy.deg2rad(x))
+ Rx = numpy.array([[1, 0, 0], [0, c, -s], [0, s, c]])
+
+ # Create rotation matrix around y axis
+ c = numpy.cos(numpy.deg2rad(y))
+ s = numpy.sin(numpy.deg2rad(y))
+ Ry = numpy.array([[c, 0, s], [0, 1, 0], [-s, 0, c]])
+
+ # Create rotation matrix around z axis
+ c = numpy.cos(numpy.deg2rad(z))
+ s = numpy.sin(numpy.deg2rad(z))
+ Rz = numpy.array([[c, -s, 0], [s, c, 0], [0, 0, 1]])
+
+ # Return intrinsic rotation matrix
+ return Rx.dot(Ry.dot(Rz))
+
+def main():
+ """
+ Track ArUcoPlan into Tobii Glasses Pro 2 camera video stream.
+ """
+
+ # Manage arguments
+ parser = argparse.ArgumentParser(description=main.__doc__.split('-')[0])
+ parser.add_argument('-s', '--segment_path', metavar='SEGMENT_PATH', type=str, default=None, help='segment path')
+ parser.add_argument('-t', '--time_range', metavar=('START_TIME', 'END_TIME'), nargs=2, type=float, default=(0., None), help='start and end time (in second)')
+ parser.add_argument('-cc', '--camera_calibration', metavar='CAM_CALIB', type=str, default=None, help='json camera calibration filepath')
+ parser.add_argument('-tc', '--tracker_configuration', metavar='TRACK_CONFIG', type=str, default=None, help='json aruco tracker configuration filepath')
+ parser.add_argument('-as', '--aruco_set', metavar='ARUCO_SET', type=str, help='json aruco set description filepath')
+ parser.add_argument('-ai', '--aoi_scene', metavar='AOI_SCENE', type=str, help='obj aoi 3D scene description filepath')
+ parser.add_argument('-o', '--output', metavar='OUT', type=str, default=None, help='destination folder path (segment folder by default)')
+ parser.add_argument('-w', '--window', metavar='DISPLAY', type=bool, default=True, help='enable window display', action=argparse.BooleanOptionalAction)
+ args = parser.parse_args()
+
+ if args.segment_path != None:
+
+ # Manage destination path
+ destination_path = '.'
+ if args.output != None:
+
+ if not os.path.exists(os.path.dirname(args.output)):
+
+ os.makedirs(os.path.dirname(args.output))
+ print(f'{os.path.dirname(args.output)} folder created')
+
+ destination_path = args.output
+
+ else:
+
+ destination_path = args.segment_path
+
+ # Export into a dedicated time range folder
+ if args.time_range[1] != None:
+ timerange_path = f'[{int(args.time_range[0])}s - {int(args.time_range[1])}s]'
+ else:
+ timerange_path = f'[all]'
+
+ destination_path = f'{destination_path}/{timerange_path}'
+
+ if not os.path.exists(destination_path):
+
+ os.makedirs(destination_path)
+ print(f'{destination_path} folder created')
+
+ vs_data_filepath = f'{destination_path}/aoi.csv'
+ vs_video_filepath = f'{destination_path}/aoi.mp4'
+
+ # Load a tobii segment
+ tobii_segment = TobiiEntities.TobiiSegment(args.segment_path, int(args.time_range[0] * 1e6), int(args.time_range[1] * 1e6) if args.time_range[1] != None else None)
+
+ # Load a tobii segment video
+ tobii_segment_video = tobii_segment.load_video()
+ print(f'Video properties:\n\tduration: {tobii_segment_video.duration/1e6} s\n\twidth: {tobii_segment_video.width} px\n\theight: {tobii_segment_video.height} px')
+
+ # Load a tobii segment data
+ tobii_segment_data = tobii_segment.load_data()
+
+ print(f'Loaded data count:')
+ for name in tobii_segment_data.keys():
+ print(f'\t{name}: {len(tobii_segment_data[name])} data')
+
+ # Access to video timestamp data buffer
+ tobii_ts_vts = tobii_segment_data['VideoTimeStamp']
+
+ # Access to timestamped head rotations data buffer
+ tobii_ts_head_rotations = tobii_segment_data['Gyroscope']
+
+ # Prepare video exportation at the same format than segment video
+ output_video = TobiiVideo.TobiiVideoOutput(vs_video_filepath, tobii_segment_video.stream)
+
+ # Create aruco camera
+ aruco_camera = ArUcoCamera.ArUcoCamera()
+
+ # Load calibration file
+ if args.camera_calibration != None:
+
+ aruco_camera.load_calibration_file(args.camera_calibration)
+
+ else:
+
+ raise UserWarning('.json camera calibration filepath required. Use -c option.')
+
+ # Build aruco set from its description file
+ aruco_set = ArUcoSetFactory.ArUcoSetFactory.make(args.aruco_set)
+
+ print(f'\n{type(aruco_set)} cache: {aruco_set}')
+
+ # Create aruco tracker
+ aruco_tracker = ArUcoTracker.ArUcoTracker(aruco_set.dictionary, aruco_set.marker_size, aruco_camera)
+
+ # Load specific configuration file
+ if args.tracker_configuration != None:
+
+ aruco_tracker.load_configuration_file(args.tracker_configuration)
+
+ print(f'\nArUcoTracker configuration for markers detection:')
+ aruco_tracker.print_configuration()
+
+ # Load AOI 3D scene centered onto aruco set
+ aoi3D_scene = AOI3DScene.AOI3DScene()
+ aoi3D_scene.load(args.aoi_scene)
+
+ print(f'\nAOI in {os.path.basename(args.aoi_scene)} scene:')
+ for aoi in aoi3D_scene.keys():
+ print(f'\t{aoi}')
+
+ # Create timestamped buffer to store AOIs and primary time stamp offset
+ ts_offset_aois = DataStructures.TimeStampedBuffer()
+
+ # Video and data replay loop
+ try:
+
+ # Initialise progress bar
+ #MiscFeatures.printProgressBar(0, tobii_segment_video.duration/1e3, prefix = 'Progress:', suffix = 'Complete', length = 100)
+
+ head_moving = False
+ head_movement_last = 0.
+
+ # Iterate on video frames
+ for video_ts, video_frame in tobii_segment_video.frames():
+
+ video_ts_ms = video_ts / 1e3
+
+ # Copy video frame to edit visualisation on it without disrupting aruco tracking
+ visu_frame = video_frame.copy()
+
+ # Process video and data frame
+ try:
+
+ # Get nearest video timestamp
+ _, nearest_vts = tobii_ts_vts.get_last_before(video_ts)
+
+ # Edit dictionary to store 2D aoi with primary timestamp offset and warning
+ all_aoi2D = {
+ 'offset': nearest_vts.offset,
+ 'warning': None
+ }
+
+ # Get nearest head rotation before video timestamp and remove all head rotations before
+ _, nearest_head_rotation = tobii_ts_head_rotations.pop_first_until(video_ts)
+
+ # Calculate head movement considering only head yaw and pitch
+ head_movement = numpy.array(nearest_head_rotation.value)
+ head_movement_px = head_movement.astype(int)
+ head_movement_norm = numpy.linalg.norm(head_movement[0:2])
+
+ # Draw movement vector
+ cv.line(visu_frame.matrix, (int(visu_frame.width/2), int(visu_frame.height/2)), (int(visu_frame.width/2) + head_movement_px[1], int(visu_frame.height/2) - head_movement_px[0]), (150, 150, 150), 3)
+
+ # Head movement detection hysteresis
+ # TODO : pass the threshold value as argument
+ if not head_moving and head_movement_norm > 50:
+ head_moving = True
+
+ if head_moving and head_movement_norm < 10:
+ head_moving = False
+
+ # When head is moving, ArUco tracking could return bad pose estimation and so bad AOI scene projection
+ if head_moving:
+
+ all_aoi2D['warning'] = 'Head is moving'
+
+ ts_offset_aois[video_ts] = all_aoi2D
+
+ raise UserWarning(all_aoi2D['warning'])
+
+ # Hide frame left and right borders before tracking to ignore markers outside focus area
+ cv.rectangle(video_frame.matrix, (0, 0), (int(video_frame.width/6), int(video_frame.height)), (0, 0, 0), -1)
+ cv.rectangle(video_frame.matrix, (int(video_frame.width*(1 - 1/6)), 0), (int(video_frame.width), int(video_frame.height)), (0, 0, 0), -1)
+
+ # Track markers with pose estimation and draw them
+ aruco_tracker.track(video_frame.matrix)
+ aruco_tracker.draw_tracked_markers(visu_frame.matrix)
+
+ # When no marker is detected, no AOI scene projection can't be done
+ if len(aruco_tracker.tracked_markers) == 0:
+
+ all_aoi2D['warning'] = 'No marker detected'
+
+ ts_offset_aois[video_ts] = all_aoi2D
+
+ raise UserWarning(all_aoi2D['warning'])
+
+ # Estimate set pose from tracked markers
+ tvec, rvec, success, validity, unvalid = aruco_set.estimate_pose(aruco_tracker.tracked_markers)
+
+ # Print unvalid distances or angles
+ for key, value in unvalid.items():
+ print(f'{video_ts}: Unvalid {key}: {value}.')
+
+ # When pose estimation fails, ignore AOI scene projection
+ if not success:
+
+ # DON'T APPLY CAMERA DISTORSION : it projects points which are far from the frame into it
+ # This hack isn't realistic but as the gaze will mainly focus on centered AOI, where the distorsion is low, it is acceptable.
+ aoi2D_video_scene = aoi3D_scene.project(tvec, rvec, aruco_camera.K)
+
+ # Draw black AOI scene
+ aoi2D_video_scene.draw(visu_frame.matrix, (0, 0), color=(0, 0, 0))
+
+ all_aoi2D['warning'] = 'Pose estimation fails'
+
+ ts_offset_aois[video_ts] = all_aoi2D
+
+ raise UserWarning(all_aoi2D['warning'])
+
+ # Consider pose estimation if it is validated by 1 face at least
+ elif validity >= 1:
+
+ # Transform scene into camera referential
+ aoi3D_camera = aoi3D_scene.transform(tvec, rvec)
+
+ # Get aoi inside vision cone field
+ cone_vision_height_cm = 200 # cm
+ cone_vision_radius_cm = numpy.tan(numpy.deg2rad(TobiiSpecifications.VISUAL_HFOV / 2)) * cone_vision_height_cm
+
+ aoi3D_inside, aoi3D_outside = aoi3D_camera.vision_cone(cone_vision_radius_cm, cone_vision_height_cm)
+
+ # Keep only aoi inside vision cone field
+ aoi3D_scene = aoi3D_scene.copy(exclude=aoi3D_outside.keys())
+
+ # DON'T APPLY CAMERA DISTORSION : it projects points which are far from the frame into it
+ # This hack isn't realistic but as the gaze will mainly focus on centered AOI, where the distorsion is low, it is acceptable.
+ aoi2D_video_scene = aoi3D_scene.project(tvec, rvec, aruco_camera.K)
+
+ # Draw AOI scene
+ aoi2D_video_scene.draw(visu_frame.matrix, (0, 0), color=(0, 255, 255))
+
+ # Store all 2D aoi
+ for aoi_name in aoi2D_video_scene.keys():
+
+ all_aoi2D[aoi_name] = numpy.rint(aoi2D_video_scene[aoi_name]).astype(int)
+
+ ts_offset_aois[video_ts] = all_aoi2D
+
+ # Warn user when the merged scene is empty
+ if len(aoi2D_video_scene.keys()) == 0:
+
+ all_aoi2D['warning'] = 'AOI projection is empty'
+
+ raise UserWarning(all_aoi2D['warning'])
+
+ # Write warning
+ except UserWarning as w:
+
+ cv.rectangle(visu_frame.matrix, (0, 50), (550, 100), (127, 127, 127), -1)
+ cv.putText(visu_frame.matrix, str(w), (20, 80), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 1, cv.LINE_AA)
+
+ # Raised when timestamped buffer is empty
+ except KeyError as e:
+ pass
+
+ # Draw focus area
+ cv.rectangle(visu_frame.matrix, (int(video_frame.width/6), 0), (int(visu_frame.width*(1-1/6)), int(visu_frame.height)), (255, 150, 150), 1)
+
+ # Draw center
+ cv.line(visu_frame.matrix, (int(visu_frame.width/2) - 50, int(visu_frame.height/2)), (int(visu_frame.width/2) + 50, int(visu_frame.height/2)), (255, 150, 150), 1)
+ cv.line(visu_frame.matrix, (int(visu_frame.width/2), int(visu_frame.height/2) - 50), (int(visu_frame.width/2), int(visu_frame.height/2) + 50), (255, 150, 150), 1)
+
+ # Write segment timing
+ cv.rectangle(visu_frame.matrix, (0, 0), (550, 50), (63, 63, 63), -1)
+ cv.putText(visu_frame.matrix, f'Segment time: {int(video_ts_ms)} ms', (20, 40), cv.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 1, cv.LINE_AA)
+
+ if args.window:
+
+ # Close window using 'Esc' key
+ if cv.waitKey(1) == 27:
+ break
+
+ # Display visualisation
+ cv.imshow(f'Segment {tobii_segment.id} ArUco AOI', visu_frame.matrix)
+
+ # Write video
+ output_video.write(visu_frame.matrix)
+
+ # Update Progress Bar
+ progress = video_ts_ms - int(args.time_range[0] * 1e3)
+ #MiscFeatures.printProgressBar(progress, tobii_segment_video.duration/1e3, prefix = 'Progress:', suffix = 'Complete', length = 100)
+
+ # Exit on 'ctrl+C' interruption
+ except KeyboardInterrupt:
+ pass
+
+ # Stop frame display
+ cv.destroyAllWindows()
+
+ # End output video file
+ output_video.close()
+
+ # Print aruco tracking metrics
+ print('\nAruco marker tracking metrics')
+ try_count, tracked_counts = aruco_tracker.track_metrics
+
+ for marker_id, tracked_count in tracked_counts.items():
+ print(f'Markers {marker_id} has been detected in {tracked_count} / {try_count} frames ({round(100 * tracked_count / try_count, 2)} %)')
+
+ # Export aruco aoi data
+ ts_offset_aois.as_dataframe().to_csv(vs_data_filepath, index=True)
+ print(f'Aruco AOI data saved into {vs_data_filepath}')
+
+ # Notify when the aruco aoi video has been exported
+ print(f'Aruco AOI video saved into {vs_video_filepath}')
+
+if __name__ == '__main__':
+
+ main() \ No newline at end of file