aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--src/argaze/GazeFeatures.py53
1 files changed, 40 insertions, 13 deletions
diff --git a/src/argaze/GazeFeatures.py b/src/argaze/GazeFeatures.py
index 286a554..32b7de7 100644
--- a/src/argaze/GazeFeatures.py
+++ b/src/argaze/GazeFeatures.py
@@ -151,6 +151,17 @@ class GazePosition(tuple, DataFeatures.TimestampedObject):
The returned position timestamp is the self object timestamp.
"""
return GazePosition(tuple(numpy.array(self) * factor), precision=self.__precision * factor if self.__precision is not None else None, timestamp=self.timestamp)
+
+ def __truediv__(self, factor: int | float | tuple) -> Self:
+ """divide position by a factor.
+
+ !!! note
+ The returned position precision is also divided by the factor.
+
+ !!! note
+ The returned position timestamp is the self object timestamp.
+ """
+ return GazePosition(tuple(numpy.array(self) / factor), precision=self.__precision / factor if self.__precision is not None else None, timestamp=self.timestamp)
def __pow__(self, factor: int | float) -> Self:
"""Power position by a factor.
@@ -226,6 +237,30 @@ class TimeStampedGazePositions(DataFeatures.TimestampedObjectsList):
return TimeStampedGazePositions({ast.literal_eval(ts_str): json_positions[ts_str] for ts_str in json_positions})
'''
+ def centroid(self) -> numpy.array:
+ """Calculate positions' centroid.
+
+ Returns:
+ centroid: centroid of all positions.
+ """
+
+ positions_array = numpy.asarray(self.values())
+ centroid = numpy.mean(positions_array, axis=0)
+
+ return (centroid[0], centroid[1])
+
+ def distances(self, point: numpy.array) -> numpy.array:
+ """Calculate all positions' distances to a point.
+
+ Returns:
+ distances: array with all distances to the point.
+ """
+
+ positions_array = numpy.asarray(self.values())
+ distances_array = numpy.sqrt(numpy.sum((positions_array - point)**2, axis=1))
+
+ return distances_array
+
@classmethod
def from_dataframe(cls, dataframe: pandas.DataFrame, timestamp: str, x: str, y: str, precision: str = None,
message: str = None) -> Self:
@@ -370,14 +405,12 @@ class GazeMovement(TimeStampedGazePositions, DataFeatures.TimestampedObject):
message: a string to describe why the movement is what it is.
"""
- def __new__(cls, positions: TimeStampedGazePositions = None, finished: bool = False,
- message: str = None, timestamp: int | float = math.nan):
+ def __new__(cls, positions: TimeStampedGazePositions = None, **kwargs):
# noinspection PyArgumentList
return TimeStampedGazePositions.__new__(cls, positions)
- def __init__(self, positions: TimeStampedGazePositions = None, finished: bool = False,
- message: str = None, timestamp: int | float = math.nan):
+ def __init__(self, positions: TimeStampedGazePositions = None, finished: bool = False, message: str = None, timestamp: int | float = math.nan):
"""Initialize GazeMovement"""
TimeStampedGazePositions.__init__(self, positions)
@@ -476,8 +509,8 @@ class GazeMovement(TimeStampedGazePositions, DataFeatures.TimestampedObject):
class Fixation(GazeMovement):
"""Define abstract fixation as gaze movement."""
- def __init__(self, positions: TimeStampedGazePositions = TimeStampedGazePositions(), finished: bool = False,
- message: str = None, **kwargs):
+ def __init__(self, positions: TimeStampedGazePositions = TimeStampedGazePositions(), finished: bool = False, message: str = None, **kwargs):
+
super().__init__(positions, finished, message, **kwargs)
self._focus = ()
@@ -487,11 +520,6 @@ class Fixation(GazeMovement):
"""Get representative position of the fixation."""
return self._focus
- @focus.setter
- def focus(self, focus: tuple):
- """Set representative position of the fixation."""
- self._focus = focus
-
def merge(self, fixation) -> Self:
"""Merge another fixation into this fixation."""
@@ -1072,8 +1100,7 @@ class AOIScanPath(list):
size = len(self.__expected_aoi)
# noinspection PyAttributeOutsideInit
- self.__transition_matrix = pandas.DataFrame(numpy.zeros((size, size)), index=self.__expected_aoi,
- columns=self.__expected_aoi)
+ self.__transition_matrix = pandas.DataFrame(numpy.zeros((size, size)), index=self.__expected_aoi, columns=self.__expected_aoi)
def __get_aoi_letter(self, aoi):