diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/argaze/ArFeatures.py | 667 |
1 files changed, 370 insertions, 297 deletions
diff --git a/src/argaze/ArFeatures.py b/src/argaze/ArFeatures.py index 3e1a56f..62ce4d8 100644 --- a/src/argaze/ArFeatures.py +++ b/src/argaze/ArFeatures.py @@ -63,10 +63,10 @@ class ArEnvironment(): scene._environment = self # Init AOI scene projections - self.__aoi_2d_scenes = {} + self.__camera_frames = {} # Init a lock to share AOI scene projections between multiple threads - self.__aoi_2d_scenes_lock = threading.Lock() + self.__camera_frames_lock = threading.Lock() @classmethod def from_json(self, json_filepath: str) -> ArSceneType: @@ -165,11 +165,16 @@ class ArEnvironment(): new_aoi_3d_scene = AOI3DScene.AOI3DScene(aoi_3d_scene_value) - # Build frames - new_frames = {} - for frame_name, frame_data in scene_data.pop('frames').items(): + # Define frame data processor + def frame_data_processor(frame_data, force_frame_size: list = []) -> ArFrame: - new_frame_size = frame_data.pop('size') + if len(force_frame_size) == 2: + + new_frame_size = force_frame_size + + else: + + new_frame_size = frame_data.pop('size') # Load background image try: @@ -190,11 +195,11 @@ class ArEnvironment(): gaze_movement_identifier_type, gaze_movement_identifier_parameters = gaze_movement_identifier_value.popitem() gaze_movement_identifier_module = importlib.import_module(f'argaze.GazeAnalysis.{gaze_movement_identifier_type}') - gaze_movement_identifier = gaze_movement_identifier_module.GazeMovementIdentifier(**gaze_movement_identifier_parameters) + new_gaze_movement_identifier = gaze_movement_identifier_module.GazeMovementIdentifier(**gaze_movement_identifier_parameters) except KeyError: - gaze_movement_identifier = None + new_gaze_movement_identifier = None # Load scan path analyzers new_scan_path_analyzers = {} @@ -284,11 +289,30 @@ class ArEnvironment(): pass - # Append new frame - new_frames[frame_name] = ArFrame.from_scene(new_aoi_3d_scene, frame_name, new_frame_size, new_frame_background, gaze_movement_identifier, new_scan_path_analyzers, new_aoi_scan_path_analyzers, **frame_data) + return new_frame_size, new_frame_background, new_gaze_movement_identifier, new_scan_path_analyzers, new_aoi_scan_path_analyzers + + # Build camera frame as large as aruco dectector optic parameters + try: + + camera_frame_data = scene_data.pop('camera_frame') + new_frame_size, new_frame_background, new_gaze_movement_identifier, new_scan_path_analyzers, new_aoi_scan_path_analyzers = frame_data_processor(camera_frame_data, force_frame_size=new_optic_parameters.dimensions) + new_camera_frame = ArFrame.from_scene(new_aoi_3d_scene, None, new_frame_size, new_frame_background, new_gaze_movement_identifier, new_scan_path_analyzers, new_aoi_scan_path_analyzers, **camera_frame_data) + + except KeyError: + + new_camera_frame = None #ArFrame.from_scene(new_aoi_3d_scene, None, new_optic_parameters.dimensions) + + # Build AOI frames + new_aoi_frames = {} + for aoi_name, aoi_frame_data in scene_data.pop('aoi_frames').items(): + + new_frame_size, new_frame_background, new_gaze_movement_identifier, new_scan_path_analyzers, new_aoi_scan_path_analyzers = frame_data_processor(aoi_frame_data) + + # Append new AOI frame + new_aoi_frames[aoi_name] = ArFrame.from_scene(new_aoi_3d_scene, aoi_name, new_frame_size, new_frame_background, new_gaze_movement_identifier, new_scan_path_analyzers, new_aoi_scan_path_analyzers, **aoi_frame_data) # Append new scene - new_scenes[scene_name] = ArScene(new_aruco_scene, new_aoi_3d_scene, new_frames, **scene_data) + new_scenes[scene_name] = ArScene(new_aruco_scene, new_aoi_3d_scene, new_camera_frame, new_aoi_frames, **scene_data) return ArEnvironment(new_name, new_aruco_detector, new_scenes) @@ -313,26 +337,25 @@ class ArEnvironment(): # For each scene for scene_name, scene in self.scenes.items(): - # For each frame - for frame_name, frame in scene.frames.items(): + # For each aoi frame + for frame_name, frame in scene.aoi_frames.items(): yield scene_name, frame_name, frame def detect_and_project(self, image: numpy.array) -> dict: - """Detect environment aruco markers from image and project scenes.""" + """Detect environment aruco markers from image and project scenes into camera frame.""" # Detect aruco markers self.aruco_detector.detect_markers(image) - # Project each AOI scene - new_aoi_2d_scenes = {} + # Project each aoi 3d scene into camera frame for scene_name, scene in self.scenes.items(): # Project scene try: # Try to build AOI scene from detected ArUco marker corners - new_aoi_2d_scenes[scene_name] = scene.build_aruco_aoi_scene(self.aruco_detector.detected_markers) + scene.build_aruco_aoi_scene(self.aruco_detector.detected_markers) except SceneProjectionFailed: @@ -342,63 +365,16 @@ class ArEnvironment(): # Estimate scene pose from detected scene markers tvec, rmat, _, _ = scene.estimate_pose(self.aruco_detector.detected_markers) - # Project AOI scene into video image according estimated pose - new_aoi_2d_scenes[scene_name] = scene.project(tvec, rmat) - - # Lock scene projections exploitation - self.__aoi_2d_scenes_lock.acquire() - - # Copy scene projections - self.__aoi_2d_scenes = new_aoi_2d_scenes.copy() - - # Unlock scene projections exploitation - self.__aoi_2d_scenes_lock.release() + # Project AOI scene into camera frame according estimated pose + scene.project(tvec, rmat) - def look(self, timestamp: int|float, gaze_position: GazeFeatures.GazePosition, data_generator: bool = False): - """Project timestamped gaze position into current scene projections.""" - - # Can't use scene projection when it is locked - if self.__aoi_2d_scenes_lock.locked(): - - #TODO: Store ignored timestamped gaze positions for further projections - print('Ignoring ', timestamp, gaze_position) - return - - # Lock scene projections - self.__aoi_2d_scenes_lock.acquire() + def look(self, timestamp: int|float, gaze_position: GazeFeatures.GazePosition): + """Project timestamped gaze position into each scene.""" # For each aoi scene projection for scene_name, scene in self.scenes.items(): - try: - - aoi_2d_scene = self.__aoi_2d_scenes[scene_name] - - # For each scene frames - for frame_name, frame in scene.frames.items(): - - # TODO: Add option to use gaze precision circle - if aoi_2d_scene[frame.name].contains_point(gaze_position.value): - - inner_x, inner_y = self.__aoi_2d_scenes[scene_name][frame.name].clockwise().inner_axis(gaze_position.value) - - # QUESTION: How to project gaze precision? - inner_gaze_position = GazeFeatures.GazePosition((inner_x, inner_y)) - - gaze_movement, look_at, scan_step_analysis, aoi_scan_step_analysis = frame.look(timestamp, inner_gaze_position * frame.size) - - # Generate looking data - if data_generator: - - yield scene_name, frame_name, frame, gaze_movement, look_at, scan_step_analysis, aoi_scan_step_analysis - - # Ignore missing aoi scene projection - except KeyError: - - pass - - # Unlock scene projections - self.__aoi_2d_scenes_lock.release() + scene.look(timestamp, gaze_position) def to_json(self, json_filepath): """Save environment to .json file.""" @@ -413,11 +389,10 @@ class ArEnvironment(): # Draw detected markers self.aruco_detector.draw_detected_markers(image) - # Draw each AOI scene - for scene_name, aoi_2d_scene in self.__aoi_2d_scenes.items(): + # Draw each scene + for scene_name, scene in self.scenes.items(): - # Draw AOI scene projection - aoi_2d_scene.draw(image, color=(255, 255, 255)) + scene.draw(image) class PoseEstimationFailed(Exception): """ @@ -440,228 +415,6 @@ class SceneProjectionFailed(Exception): super().__init__(message) @dataclass -class ArScene(): - """ - Define an Augmented Reality scene with ArUco markers and AOI scenes. - - Parameters: - aruco_scene: ArUco markers 3D scene description used to estimate scene pose from detected markers: see [estimate_pose][argaze.ArFeatures.ArScene.estimate_pose] function below. - - aoi_3d_scene: AOI 3D scene description that will be projected onto estimated scene once its pose will be estimated : see [project][argaze.ArFeatures.ArScene.project] function below. - - frames: All scene frames - - aruco_axis: Optional dictionary to define orthogonal axis where each axis is defined by list of 3 markers identifier (first is origin). \ - This pose estimation strategy is used by [estimate_pose][argaze.ArFeatures.ArScene.estimate_pose] function when at least 3 markers are detected. - - aruco_aoi: Optional dictionary of AOI defined by list of markers identifier and markers corners index tuples: see [build_aruco_aoi_scene][argaze.ArFeatures.ArScene.build_aruco_aoi_scene] function below. - - angle_tolerance: Optional angle error tolerance to validate marker pose in degree used into [estimate_pose][argaze.ArFeatures.ArScene.estimate_pose] function. - - distance_tolerance: Optional distance error tolerance to validate marker pose in centimeter used into [estimate_pose][argaze.ArFeatures.ArScene.estimate_pose] function. - """ - - aruco_scene: ArUcoScene.ArUcoScene = field(default_factory=ArUcoScene.ArUcoScene) - aoi_3d_scene: AOI3DScene.AOI3DScene = field(default_factory=AOI3DScene.AOI3DScene) - frames: dict = field(default_factory=dict) - aruco_axis: dict = field(default_factory=dict) - aruco_aoi: dict = field(default_factory=dict) - angle_tolerance: float = field(default=0.) - distance_tolerance: float = field(default=0.) - - def __post_init__(self): - - # Define environment attribute: it will be setup by parent environment later - self._environment = None - - # Preprocess orthogonal projection to speed up further aruco aoi processings - self.__orthogonal_projection_cache = self.aoi_3d_scene.orthogonal_projection - - # Setup frames scene after frame creation - for name, frame in self.frames.items(): - frame._scene = self - - def __str__(self) -> str: - """ - Returns: - String representation - """ - - output = f'ArEnvironment:\n{self._environment.name}\n' - output += f'ArUcoScene:\n{self.aruco_scene}\n' - output += f'AOI3DScene:\n{self.aoi_3d_scene}\n' - - return output - - def estimate_pose(self, detected_markers) -> Tuple[numpy.array, numpy.array, str, dict]: - """Estimate scene pose from detected ArUco markers. - - Returns: - scene translation vector - scene rotation matrix - pose estimation strategy - dict of markers used to estimate the pose - """ - - # Pose estimation fails when no marker is detected - if len(detected_markers) == 0: - - raise PoseEstimationFailed('No marker detected') - - scene_markers, _ = self.aruco_scene.filter_markers(detected_markers) - - # Pose estimation fails when no marker belongs to the scene - if len(scene_markers) == 0: - - raise PoseEstimationFailed('No marker belongs to the scene') - - # Estimate scene pose from unique marker transformations - elif len(scene_markers) == 1: - - marker_id, marker = scene_markers.popitem() - tvec, rmat = self.aruco_scene.estimate_pose_from_single_marker(marker) - - return tvec, rmat, 'estimate_pose_from_single_marker', {marker_id: marker} - - # Try to estimate scene pose from 3 markers defining an orthogonal axis - elif len(scene_markers) >= 3 and len(self.aruco_axis) > 0: - - for axis_name, axis_markers in self.aruco_axis.items(): - - try: - - origin_marker = scene_markers[axis_markers['origin_marker']] - horizontal_axis_marker = scene_markers[axis_markers['horizontal_axis_marker']] - vertical_axis_marker = scene_markers[axis_markers['vertical_axis_marker']] - - tvec, rmat = self.aruco_scene.estimate_pose_from_axis_markers(origin_marker, horizontal_axis_marker, vertical_axis_marker) - - return tvec, rmat, 'estimate_pose_from_axis_markers', {origin_marker.identifier: origin_marker, horizontal_axis_marker.identifier: horizontal_axis_marker, vertical_axis_marker.identifier: vertical_axis_marker} - - except: - pass - - raise PoseEstimationFailed('No marker axis') - - # Otherwise, check markers consistency - consistent_markers, unconsistent_markers, unconsistencies = self.aruco_scene.check_markers_consistency(scene_markers, self.angle_tolerance, self.distance_tolerance) - - # Pose estimation fails when no marker passes consistency checking - if len(consistent_markers) == 0: - - raise PoseEstimationFailed('Unconsistent marker poses', unconsistencies) - - # Otherwise, estimate scene pose from all consistent markers pose - tvec, rmat = self.aruco_scene.estimate_pose_from_markers(consistent_markers) - - return tvec, rmat, 'estimate_pose_from_markers', consistent_markers - - def project(self, tvec: numpy.array, rvec: numpy.array, visual_hfov: float = 0.) -> AOI2DScene.AOI2DScene: - """Project AOI scene according estimated pose and optional horizontal field of view clipping angle. - - Parameters: - tvec: translation vector - rvec: rotation vector - visual_hfov: horizontal field of view clipping angle - """ - - # Clip AOI out of the visual horizontal field of view (optional) - if visual_hfov > 0: - - # Transform scene into camera referential - aoi_3d_scene_camera_ref = self.aoi_3d_scene.transform(tvec, rvec) - - # Get aoi inside vision cone field - cone_vision_height_cm = 200 # cm - cone_vision_radius_cm = numpy.tan(numpy.deg2rad(visual_hfov / 2)) * cone_vision_height_cm - - _, aoi_outside = aoi_3d_scene_camera_ref.vision_cone(cone_vision_radius_cm, cone_vision_height_cm) - - # Keep only aoi inside vision cone field - aoi_3d_scene_copy = self.aoi_3d_scene.copy(exclude=aoi_outside.keys()) - - else: - - aoi_3d_scene_copy = self.aoi_3d_scene.copy() - - aoi_2d_scene = aoi_3d_scene_copy.project(tvec, rvec, self._environment.aruco_detector.optic_parameters.K) - - # Warn user when the projected scene is empty - if len(aoi_2d_scene) == 0: - - raise SceneProjectionFailed('AOI projection is empty') - - return aoi_2d_scene - - def build_aruco_aoi_scene(self, detected_markers) -> AOI2DScene.AOI2DScene: - """ - Build AOI scene from detected ArUco markers as defined in aruco_aoi dictionary. - - Returns: - built AOI 2D scene - """ - - # Check aruco aoi is defined - if len(self.aruco_aoi) == 0: - - raise SceneProjectionFailed('No aruco aoi is defined') - - # AOI projection fails when no marker is detected - if len(detected_markers) == 0: - - raise SceneProjectionFailed('No marker detected') - - aruco_aoi_scene = {} - - for aruco_aoi_name, aoi in self.aruco_aoi.items(): - - # Each aoi's corner is defined by a marker's corner - aoi_corners = [] - for corner in ["upper_left_corner", "upper_right_corner", "lower_right_corner", "lower_left_corner"]: - - marker_identifier = aoi[corner]["marker_identifier"] - - try: - - aoi_corners.append(detected_markers[marker_identifier].corners[0][aoi[corner]["marker_corner_index"]]) - - except Exception as e: - - raise SceneProjectionFailed(f'Missing marker #{e} to build ArUco AOI scene') - - aruco_aoi_scene[aruco_aoi_name] = AOIFeatures.AreaOfInterest(aoi_corners) - - # Then each inner aoi is projected from the current aruco aoi - for inner_aoi_name, inner_aoi in self.aoi_3d_scene.items(): - - if aruco_aoi_name != inner_aoi_name: - - aoi_corners = [numpy.array(aruco_aoi_scene[aruco_aoi_name].outter_axis(inner)) for inner in self.__orthogonal_projection_cache[inner_aoi_name]] - aruco_aoi_scene[inner_aoi_name] = AOIFeatures.AreaOfInterest(aoi_corners) - - return AOI2DScene.AOI2DScene(aruco_aoi_scene) - - def draw_axis(self, image: numpy.array): - """ - Draw scene axis into image. - - Parameters: - image: where to draw - """ - - self.aruco_scene.draw_axis(image, self._environment.aruco_detector.optic_parameters.K, self._environment.aruco_detector.optic_parameters.D) - - def draw_places(self, image: numpy.array): - """ - Draw scene places into image. - - Parameters: - image: where to draw - """ - - self.aruco_scene.draw_places(image, self._environment.aruco_detector.optic_parameters.K, self._environment.aruco_detector.optic_parameters.D) - -@dataclass class ArFrame(): """ Define Augmented Reality frame as an AOI2DScene made from a projected then reframed parent AOI3DScene. @@ -702,9 +455,15 @@ class ArFrame(): self.__looking_lock = threading.Lock() @classmethod - def from_scene(self, aoi_3d_scene, aoi_name, size, background, gaze_movement_identifier, scan_path_analyzers: list = [], aoi_scan_path_analyzers: list = [], heatmap: bool = False) -> ArFrameType: + def from_scene(self, aoi_3d_scene, aoi_name, size, background: numpy.array = numpy.empty((0, 0)), gaze_movement_identifier: GazeFeatures.GazeMovementIdentifier = None, scan_path_analyzers: list = [], aoi_scan_path_analyzers: list = [], heatmap: bool = False) -> ArFrameType: - aoi_2d_scene = aoi_3d_scene.orthogonal_projection.reframe(aoi_name, size) + if aoi_name: + + aoi_2d_scene = aoi_3d_scene.orthogonal_projection.reframe(aoi_name, size) + + else: + + aoi_2d_scene = AOI2DScene.AOI2DScene() return ArFrame(aoi_name, \ size, \ @@ -885,3 +644,317 @@ class ArFrame(): # Return looking data return gaze_movement, look_at, scan_step_analysis, aoi_scan_step_analysis + + @property + def image(self,): + """ + Get frame image + """ + + image = self.background.copy() + + self.aoi_2d_scene.draw(image, color=(255, 255, 255)) + self.current_gaze_position.draw(image, color=(255, 255, 255)) + + self.current_gaze_movement.draw(image, color=(0, 255, 255)) + self.current_gaze_movement.draw_positions(image) + + # Check frame fixation + if GazeFeatures.is_fixation(self.current_gaze_movement): + + # Draw looked AOI + self.aoi_2d_scene.draw_circlecast(image, self.current_gaze_movement.focus, self.current_gaze_movement.deviation_max, base_color=(0, 0, 0), matching_color=(255, 255, 255)) + + return image + +@dataclass +class ArScene(): + """ + Define an Augmented Reality scene with ArUco markers and AOI scenes. + + Parameters: + aruco_scene: ArUco markers 3D scene description used to estimate scene pose from detected markers: see [estimate_pose][argaze.ArFeatures.ArScene.estimate_pose] function below. + + aoi_3d_scene: AOI 3D scene description that will be projected onto estimated scene once its pose will be estimated : see [project][argaze.ArFeatures.ArScene.project] function below. + + camera_frame: Where AOI 3D scene will be projected + + aoi_frames: Optional dictionary to define AOI as ArFrame. + + aruco_axis: Optional dictionary to define orthogonal axis where each axis is defined by list of 3 markers identifier (first is origin). \ + This pose estimation strategy is used by [estimate_pose][argaze.ArFeatures.ArScene.estimate_pose] function when at least 3 markers are detected. + + aruco_aoi: Optional dictionary of AOI defined by list of markers identifier and markers corners index tuples: see [build_aruco_aoi_scene][argaze.ArFeatures.ArScene.build_aruco_aoi_scene] function below. + + angle_tolerance: Optional angle error tolerance to validate marker pose in degree used into [estimate_pose][argaze.ArFeatures.ArScene.estimate_pose] function. + + distance_tolerance: Optional distance error tolerance to validate marker pose in centimeter used into [estimate_pose][argaze.ArFeatures.ArScene.estimate_pose] function. + """ + + aruco_scene: ArUcoScene.ArUcoScene = field(default_factory=ArUcoScene.ArUcoScene) + aoi_3d_scene: AOI3DScene.AOI3DScene = field(default_factory=AOI3DScene.AOI3DScene) + camera_frame: ArFrame = field(default_factory=ArFrame) + aoi_frames: dict = field(default_factory=dict) + aruco_axis: dict = field(default_factory=dict) + aruco_aoi: dict = field(default_factory=dict) + angle_tolerance: float = field(default=0.) + distance_tolerance: float = field(default=0.) + + def __post_init__(self): + + # Define environment attribute: it will be setup by parent environment later + self._environment = None + + # Preprocess orthogonal projection to speed up further aruco aoi processings + self.__orthogonal_projection_cache = self.aoi_3d_scene.orthogonal_projection + + # Setup ArFrame scene attribute after ArFrame creation + for aoi_name, frame in self.aoi_frames.items(): + frame._scene = self + + # Init lock to share camera frame with multiples threads + self.__camera_frame_lock = threading.Lock() + + def __str__(self) -> str: + """ + Returns: + String representation + """ + + output = f'ArEnvironment:\n{self._environment.name}\n' + output += f'ArUcoScene:\n{self.aruco_scene}\n' + output += f'AOI3DScene:\n{self.aoi_3d_scene}\n' + + return output + + def estimate_pose(self, detected_markers) -> Tuple[numpy.array, numpy.array, str, dict]: + """Estimate scene pose from detected ArUco markers. + + Returns: + scene translation vector + scene rotation matrix + pose estimation strategy + dict of markers used to estimate the pose + """ + + # Pose estimation fails when no marker is detected + if len(detected_markers) == 0: + + raise PoseEstimationFailed('No marker detected') + + scene_markers, _ = self.aruco_scene.filter_markers(detected_markers) + + # Pose estimation fails when no marker belongs to the scene + if len(scene_markers) == 0: + + raise PoseEstimationFailed('No marker belongs to the scene') + + # Estimate scene pose from unique marker transformations + elif len(scene_markers) == 1: + + marker_id, marker = scene_markers.popitem() + tvec, rmat = self.aruco_scene.estimate_pose_from_single_marker(marker) + + return tvec, rmat, 'estimate_pose_from_single_marker', {marker_id: marker} + + # Try to estimate scene pose from 3 markers defining an orthogonal axis + elif len(scene_markers) >= 3 and len(self.aruco_axis) > 0: + + for axis_name, axis_markers in self.aruco_axis.items(): + + try: + + origin_marker = scene_markers[axis_markers['origin_marker']] + horizontal_axis_marker = scene_markers[axis_markers['horizontal_axis_marker']] + vertical_axis_marker = scene_markers[axis_markers['vertical_axis_marker']] + + tvec, rmat = self.aruco_scene.estimate_pose_from_axis_markers(origin_marker, horizontal_axis_marker, vertical_axis_marker) + + return tvec, rmat, 'estimate_pose_from_axis_markers', {origin_marker.identifier: origin_marker, horizontal_axis_marker.identifier: horizontal_axis_marker, vertical_axis_marker.identifier: vertical_axis_marker} + + except: + pass + + raise PoseEstimationFailed('No marker axis') + + # Otherwise, check markers consistency + consistent_markers, unconsistent_markers, unconsistencies = self.aruco_scene.check_markers_consistency(scene_markers, self.angle_tolerance, self.distance_tolerance) + + # Pose estimation fails when no marker passes consistency checking + if len(consistent_markers) == 0: + + raise PoseEstimationFailed('Unconsistent marker poses', unconsistencies) + + # Otherwise, estimate scene pose from all consistent markers pose + tvec, rmat = self.aruco_scene.estimate_pose_from_markers(consistent_markers) + + return tvec, rmat, 'estimate_pose_from_markers', consistent_markers + + def project(self, tvec: numpy.array, rvec: numpy.array, visual_hfov: float = 0.) -> ArFrame: + """Project AOI scene according estimated pose and optional horizontal field of view clipping angle. + + Parameters: + tvec: translation vector + rvec: rotation vector + visual_hfov: horizontal field of view clipping angle + """ + + # Clip AOI out of the visual horizontal field of view (optional) + if visual_hfov > 0: + + # Transform scene into camera referential + aoi_3d_scene_camera_ref = self.aoi_3d_scene.transform(tvec, rvec) + + # Get aoi inside vision cone field + cone_vision_height_cm = 200 # cm + cone_vision_radius_cm = numpy.tan(numpy.deg2rad(visual_hfov / 2)) * cone_vision_height_cm + + _, aoi_outside = aoi_3d_scene_camera_ref.vision_cone(cone_vision_radius_cm, cone_vision_height_cm) + + # Keep only aoi inside vision cone field + aoi_3d_scene_copy = self.aoi_3d_scene.copy(exclude=aoi_outside.keys()) + + else: + + aoi_3d_scene_copy = self.aoi_3d_scene.copy() + + # Lock camera frame exploitation + self.__camera_frame_lock.acquire() + + # Update camera frame + self.camera_frame.aoi_2d_scene = aoi_3d_scene_copy.project(tvec, rvec, self._environment.aruco_detector.optic_parameters.K) + + # Unlock camera frame exploitation + self.__camera_frame_lock.release() + + # Warn user when the projected scene is empty + if len(self.camera_frame.aoi_2d_scene) == 0: + + raise SceneProjectionFailed('AOI projection is empty') + + def build_aruco_aoi_scene(self, detected_markers) -> AOI2DScene.AOI2DScene: + """ + Build AOI scene from detected ArUco markers as defined in aruco_aoi dictionary. + + Returns: + built AOI 2D scene + """ + + # Check aruco aoi is defined + if len(self.aruco_aoi) == 0: + + raise SceneProjectionFailed('No aruco aoi is defined') + + # AOI projection fails when no marker is detected + if len(detected_markers) == 0: + + raise SceneProjectionFailed('No marker detected') + + aruco_aoi_scene = {} + + for aruco_aoi_name, aoi in self.aruco_aoi.items(): + + # Each aoi's corner is defined by a marker's corner + aoi_corners = [] + for corner in ["upper_left_corner", "upper_right_corner", "lower_right_corner", "lower_left_corner"]: + + marker_identifier = aoi[corner]["marker_identifier"] + + try: + + aoi_corners.append(detected_markers[marker_identifier].corners[0][aoi[corner]["marker_corner_index"]]) + + except Exception as e: + + raise SceneProjectionFailed(f'Missing marker #{e} to build ArUco AOI scene') + + aruco_aoi_scene[aruco_aoi_name] = AOIFeatures.AreaOfInterest(aoi_corners) + + # Then each inner aoi is projected from the current aruco aoi + for inner_aoi_name, inner_aoi in self.aoi_3d_scene.items(): + + if aruco_aoi_name != inner_aoi_name: + + aoi_corners = [numpy.array(aruco_aoi_scene[aruco_aoi_name].outter_axis(inner)) for inner in self.__orthogonal_projection_cache[inner_aoi_name]] + aruco_aoi_scene[inner_aoi_name] = AOIFeatures.AreaOfInterest(aoi_corners) + + # Lock camera frame exploitation + self.__camera_frame_lock.acquire() + + # Update camera frame + self.camera_frame.aoi_2d_scene = AOI2DScene.AOI2DScene(aruco_aoi_scene) + + # Unlock camera frame exploitation + self.__camera_frame_lock.release() + + def look(self, timestamp: int|float, gaze_position: GazeFeatures.GazePosition): + """Project timestamped gaze position into camera frame.""" + + # Can't use camera frame when it is locked + if self.__camera_frame_lock.locked(): + + #TODO: Store ignored timestamped gaze positions for further projections + print('Ignoring ', timestamp, gaze_position) + return + + # Lock camera frame exploitation + self.__camera_frame_lock.acquire() + + # Project gaze position in camera frame + yield frame.look(timestamp, inner_gaze_position * frame.size) + + # Project gaze position into each aoi frames if possible + for aoi_name, frame in self.aoi_frames.items(): + + # Is aoi frame projected into camera frame ? + try: + + aoi_2d = self.camera_frame.aoi_2d_scene[frame.name] + + # TODO: Add option to use gaze precision circle + if aoi_2d.contains_point(gaze_position.value): + + inner_x, inner_y = aoi_2d.clockwise().inner_axis(gaze_position.value) + + # QUESTION: How to project gaze precision? + inner_gaze_position = GazeFeatures.GazePosition((inner_x, inner_y)) + + yield frame.look(timestamp, inner_gaze_position * frame.size) + + # Ignore missing aoi frame projection + except KeyError: + + pass + + # Unlock camera frame exploitation + self.__camera_frame_lock.release() + + def draw(self, image: numpy.array): + """ + Draw camera frame + + Parameters: + image: where to draw + """ + + self.camera_frame.aoi_2d_scene.draw(image) + + def draw_axis(self, image: numpy.array): + """ + Draw scene axis into image. + + Parameters: + image: where to draw + """ + + self.aruco_scene.draw_axis(image, self._environment.aruco_detector.optic_parameters.K, self._environment.aruco_detector.optic_parameters.D) + + def draw_places(self, image: numpy.array): + """ + Draw scene places into image. + + Parameters: + image: where to draw + """ + + self.aruco_scene.draw_places(image, self._environment.aruco_detector.optic_parameters.K, self._environment.aruco_detector.optic_parameters.D) |