1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
|
#!/usr/bin/env python
"""Manage AR environement assets."""
__author__ = "Théo de la Hogue"
__credits__ = []
__copyright__ = "Copyright 2023, Ecole Nationale de l'Aviation Civile (ENAC)"
__license__ = "BSD"
from typing import TypeVar, Tuple
from dataclasses import dataclass, field
import json
import os
import importlib
from inspect import getmembers
import threading
import time
from argaze import DataStructures, GazeFeatures
from argaze.ArUcoMarkers import *
from argaze.AreaOfInterest import *
from argaze.GazeAnalysis import *
import numpy
import cv2
ArLayerType = TypeVar('ArLayer', bound="ArLayer")
# Type definition for type annotation convenience
ArFrameType = TypeVar('ArFrame', bound="ArFrame")
# Type definition for type annotation convenience
ArSceneType = TypeVar('ArScene', bound="ArScene")
# Type definition for type annotation convenience
ArEnvironmentType = TypeVar('ArEnvironment', bound="ArEnvironment")
# Type definition for type annotation convenience
class PoseEstimationFailed(Exception):
"""
Exception raised by ArScene estimate_pose method when the pose can't be estimated due to unconsistencies.
"""
def __init__(self, message, unconsistencies=None):
super().__init__(message)
self.unconsistencies = unconsistencies
class SceneProjectionFailed(Exception):
"""
Exception raised by ArEnvironment detect_and_project method when the scene can't be projected.
"""
def __init__(self, message):
super().__init__(message)
class LoadingFailed(Exception):
"""
Exception raised when attributes loading fails.
"""
def __init__(self, message):
super().__init__(message)
# Define default ArLayer draw parameters
DEFAULT_ARLAYER_DRAW_PARAMETERS = {
"draw_aoi_scene": {
"draw_aoi": {
"color": (255, 255, 255),
"border_size": 1
}
},
"draw_aoi_matching": {
"draw_matched_fixation": {
"deviation_circle_color": (255, 255, 255)
},
"draw_matched_fixation_positions": {
"position_color": (0, 255, 255),
"line_color": (0, 0, 0)
},
"draw_matched_region": {
"color": (0, 255, 0),
"border_size": 4
},
"draw_looked_aoi": {
"color": (0, 255, 0),
"border_size": 2
},
"looked_aoi_name_color": (255, 255, 255),
"looked_aoi_name_offset": (0, -10)
}
}
@dataclass
class ArLayer():
"""
Defines a space where to make matching of gaze movements and AOIs and inside which those matchings need to be analyzed.
Parameters:
name: name of the layer
aoi_color: color to used in draw method
aoi_scene: AOI scene description
aoi_matcher: AOI matcher object
aoi_scan_path: AOI scan path object
aoi_scan_path_analyzers: dictionary of AOI scan path analyzers
log: enable aoi scan path analysis logging
draw_parameters: default parameters passed to draw method
"""
name: str
aoi_color: tuple = field(default=(0, 0, 0))
aoi_scene: AOIFeatures.AOIScene = field(default_factory=AOIFeatures.AOIScene)
aoi_matcher: GazeFeatures.AOIMatcher = field(default_factory=GazeFeatures.AOIMatcher)
aoi_scan_path: GazeFeatures.AOIScanPath = field(default_factory=GazeFeatures.AOIScanPath)
aoi_scan_path_analyzers: dict = field(default_factory=dict)
log: bool = field(default=False)
draw_parameters: dict = field(default_factory=DEFAULT_ARLAYER_DRAW_PARAMETERS)
def __post_init__(self):
# Define parent attribute: it will be setup by parent later
self.__parent = None
# Init current gaze movement
self.__gaze_movement = GazeFeatures.UnvalidGazeMovement()
# Init lock to share looking data with multiples threads
self.__look_lock = threading.Lock()
# Cast aoi scene to its effective dimension
if self.aoi_scene.dimension == 2:
self.aoi_scene = AOI2DScene.AOI2DScene(self.aoi_scene)
elif self.aoi_scene.dimension == 3:
self.aoi_scene = AOI3DScene.AOI3DScene(self.aoi_scene)
# Prepare logging if needed
self.__ts_logs = {}
if self.log:
# Create timestamped buffers to log each aoi scan path analysis
for aoi_scan_path_analyzer_module_path in self.aoi_scan_path_analyzers.keys():
self.__ts_logs[aoi_scan_path_analyzer_module_path] = DataStructures.TimeStampedBuffer()
@classmethod
def from_dict(self, layer_data: dict, working_directory: str = None) -> ArLayerType:
"""Load attributes from dictionary.
Parameters:
layer_data: dictionary with attributes to load
working_directory: folder path where to load files when a dictionary value is a relative filepath.
"""
# Load name
try:
new_layer_name = layer_data.pop('name')
except KeyError:
new_layer_name = None
# Load aoi color
try:
new_aoi_color = layer_data.pop('aoi_color')
except KeyError:
new_aoi_color = (0, 0, 0)
# Load optional aoi filter
try:
aoi_exclude_list = layer_data.pop('aoi_exclude')
except KeyError:
aoi_exclude_list = []
# Load aoi scene
try:
new_aoi_scene_value = layer_data.pop('aoi_scene')
# str: relative path to file
if type(new_aoi_scene_value) == str:
filepath = os.path.join(working_directory, new_aoi_scene_value)
file_format = filepath.split('.')[-1]
# JSON file format for 2D or 3D dimension
if file_format == 'json':
new_aoi_scene = AOIFeatures.AOIScene.from_json(filepath).copy(exclude=aoi_exclude_list)
# OBJ file format for 3D dimension only
elif file_format == 'obj':
new_aoi_scene = AOI3DScene.AOI3DScene.from_obj(filepath).copy(exclude=aoi_exclude_list)
# dict:
else:
new_aoi_scene = AOIFeatures.AOIScene.from_dict(new_aoi_scene_value)
except KeyError:
# Add AOI 2D Scene by default
new_aoi_scene = AOI2DScene.AOI2DScene()
# Load aoi matcher
try:
aoi_matcher_value = layer_data.pop('aoi_matcher')
aoi_matcher_module_path, aoi_matcher_parameters = aoi_matcher_value.popitem()
# Prepend argaze.GazeAnalysis path when a single name is provided
if len(aoi_matcher_module_path.split('.')) == 1:
aoi_matcher_module_path = f'argaze.GazeAnalysis.{aoi_matcher_module_path}'
aoi_matcher_module = importlib.import_module(aoi_matcher_module_path)
new_aoi_matcher = aoi_matcher_module.AOIMatcher(**aoi_matcher_parameters)
except KeyError:
new_aoi_matcher = None
# Edit expected AOI list by removing AOI with name equals to layer name
expected_aois = list(new_aoi_scene.keys())
if new_layer_name in expected_aois:
expected_aois.remove(new_layer_name)
# Load AOI scan path
try:
new_aoi_scan_path_data = layer_data.pop('aoi_scan_path')
new_aoi_scan_path_data['expected_aois'] = expected_aois
new_aoi_scan_path = GazeFeatures.AOIScanPath(**new_aoi_scan_path_data)
except KeyError:
new_aoi_scan_path_data = {}
new_aoi_scan_path_data['expected_aois'] = expected_aois
new_aoi_scan_path = None
# Load AOI scan path analyzers
new_aoi_scan_path_analyzers = {}
try:
new_aoi_scan_path_analyzers_value = layer_data.pop('aoi_scan_path_analyzers')
for aoi_scan_path_analyzer_module_path, aoi_scan_path_analyzer_parameters in new_aoi_scan_path_analyzers_value.items():
# Prepend argaze.GazeAnalysis path when a single name is provided
if len(aoi_scan_path_analyzer_module_path.split('.')) == 1:
aoi_scan_path_analyzer_module_path = f'argaze.GazeAnalysis.{aoi_scan_path_analyzer_module_path}'
aoi_scan_path_analyzer_module = importlib.import_module(aoi_scan_path_analyzer_module_path)
# Check aoi scan path analyzer parameters type
members = getmembers(aoi_scan_path_analyzer_module.AOIScanPathAnalyzer)
for member in members:
if '__annotations__' in member:
for parameter, parameter_type in member[1].items():
# Check if parameter is part of argaze.GazeAnalysis module
parameter_module_path = parameter_type.__module__.split('.')
# Check if parameter is part of a package
if len(parameter_type.__module__.split('.')) > 1:
# Try get existing analyzer instance to append as parameter
try:
aoi_scan_path_analyzer_parameters[parameter] = new_aoi_scan_path_analyzers[parameter_type.__module__]
except KeyError:
raise LoadingFailed(f'{aoi_scan_path_analyzer_module_path} aoi scan path analyzer loading fails because {parameter_type.__module__} aoi scan path analyzer is missing.')
aoi_scan_path_analyzer = aoi_scan_path_analyzer_module.AOIScanPathAnalyzer(**aoi_scan_path_analyzer_parameters)
new_aoi_scan_path_analyzers[aoi_scan_path_analyzer_module_path] = aoi_scan_path_analyzer
# Force AOI scan path creation
if len(new_aoi_scan_path_analyzers) > 0 and new_aoi_scan_path == None:
new_aoi_scan_path = GazeFeatures.AOIScanPath(**new_aoi_scan_path_data)
except KeyError:
pass
# Load log status
try:
new_layer_log = layer_data.pop('log')
except KeyError:
new_layer_log = False
# Load image parameters
try:
new_layer_draw_parameters = layer_data.pop('draw_parameters')
except KeyError:
new_layer_draw_parameters = DEFAULT_ARLAYER_DRAW_PARAMETERS
# Create layer
return ArLayer(new_layer_name, \
new_aoi_color, \
new_aoi_scene, \
new_aoi_matcher, \
new_aoi_scan_path, \
new_aoi_scan_path_analyzers, \
new_layer_log, \
new_layer_draw_parameters \
)
@classmethod
def from_json(self, json_filepath: str) -> ArLayerType:
"""
Load attributes from .json file.
Parameters:
json_filepath: path to json file
"""
with open(json_filepath) as configuration_file:
layer_data = json.load(configuration_file)
working_directory = os.path.dirname(json_filepath)
return ArLayer.from_dict(layer_data, working_directory)
@property
def parent(self):
"""Get parent instance"""
return self.__parent
@parent.setter
def parent(self, parent):
"""Get parent instance"""
self.__parent = parent
@property
def logs(self):
"""
Get stored logs
"""
return self.__ts_logs
def look(self, timestamp: int|float, gaze_movement: GazeFeatures.GazePosition = GazeFeatures.UnvalidGazePosition()) -> dict:
"""
Project timestamped gaze movement into layer.
!!! warning
Be aware that gaze movement positions are in the same range of value than aoi_scene size attribute.
Parameters:
gaze_movement: gaze movement to project
Returns:
looked_aoi: most likely looked aoi name
aoi_scan_path_analysis: aoi scan path analysis at each new scan step if aoi_scan_path is instanciated
exception: error catched during gaze movement processing
"""
# Lock layer exploitation
self.__look_lock.acquire()
# Update current gaze movement
self.__gaze_movement = gaze_movement
# Init looked aoi
looked_aoi = None
# Init aoi scan path analysis report
aoi_scan_path_analysis = {}
# Assess pipeline execution times
execution_times = {
'aoi_matcher': None,
'aoi_scan_step_analyzers': {}
}
# Catch any error
exception = None
try:
# Check gaze movement validity
if gaze_movement.valid:
if self.aoi_matcher is not None:
# Store aoi matching start date
matching_start = time.perf_counter()
# Update looked aoi thanks to aoi matcher
# Note: don't filter finished/unfinished fixation/saccade as we don't know how the aoi matcher works internally
looked_aoi = self.aoi_matcher.match(self.aoi_scene, gaze_movement, exclude=[self.name])
# Assess aoi matching time in ms
execution_times['aoi_matcher'] = (time.perf_counter() - matching_start) * 1e3
# Finished gaze movement has been identified
if gaze_movement.finished:
if GazeFeatures.is_fixation(gaze_movement):
# Append fixation to aoi scan path
if self.aoi_scan_path is not None and looked_aoi is not None:
aoi_scan_step = self.aoi_scan_path.append_fixation(timestamp, gaze_movement, looked_aoi)
# Is there a new step?
if aoi_scan_step is not None and len(self.aoi_scan_path) > 1:
for aoi_scan_path_analyzer_module_path, aoi_scan_path_analyzer in self.aoi_scan_path_analyzers.items():
# Store aoi scan path analysis start date
aoi_scan_path_analysis_start = time.perf_counter()
# Analyze aoi scan path
aoi_scan_path_analyzer.analyze(self.aoi_scan_path)
# Assess aoi scan step analysis time in ms
execution_times['aoi_scan_step_analyzers'][aoi_scan_path_analyzer_module_path] = (time.perf_counter() - aoi_scan_path_analysis_start) * 1e3
# Store analysis
aoi_scan_path_analysis[aoi_scan_path_analyzer_module_path] = aoi_scan_path_analyzer.analysis
# Log analysis
if self.log:
self.__ts_logs[aoi_scan_path_analyzer_module_path][timestamp] = aoi_scan_path_analyzer.analysis
elif GazeFeatures.is_saccade(gaze_movement):
# Append saccade to aoi scan path
if self.aoi_scan_path is not None:
self.aoi_scan_path.append_saccade(timestamp, gaze_movement)
except Exception as e:
print('Warning: the following error occurs in ArLayer.look method:', e)
looked_aoi = None
aoi_scan_path_analysis = {}
exception = e
# Unlock layer exploitation
self.__look_lock.release()
# Sum all execution times
total_execution_time = 0
if execution_times['aoi_matcher']:
total_execution_time += execution_times['aoi_matcher']
for _, aoi_scan_path_analysis_time in execution_times['aoi_scan_step_analyzers'].items():
total_execution_time += aoi_scan_path_analysis_time
execution_times['total'] = total_execution_time
# Return look data
return looked_aoi, aoi_scan_path_analysis, execution_times, exception
def draw(self, image: numpy.array, draw_aoi_scene: dict = None, draw_aoi_matching: dict = None):
"""
Draw into image
Parameters:
draw_aoi_scene: AreaOfInterest.AOI2DScene.draw parameters (if None, no aoi scene is drawn)
draw_aoi_matching: AOIMatcher.draw parameters (which depends of the loaded aoi matcher module, if None, no aoi matching is drawn)
"""
# Use draw_parameters attribute if no parameters
if draw_aoi_scene is None and draw_aoi_matching is None:
return self.draw(image, **self.draw_parameters)
# Lock frame exploitation
self.__look_lock.acquire()
# Draw aoi if required
if draw_aoi_scene is not None:
self.aoi_scene.draw(image, **draw_aoi_scene)
# Draw aoi matching if required
if draw_aoi_matching is not None and self.aoi_matcher is not None:
self.aoi_matcher.draw(image, **draw_aoi_matching)
# Unlock frame exploitation
self.__look_lock.release()
# Define default ArFrame image parameters
DEFAULT_ARFRAME_IMAGE_PARAMETERS = {
"background_weight": 1.,
"heatmap_weight": 0.5,
"draw_scan_path": {
"draw_fixations": {
"deviation_circle_color": (255, 255, 255),
"duration_border_color": (127, 127, 127),
"duration_factor": 1e-2
},
"draw_saccades": {
"line_color": (255, 255, 255)
},
"deepness": 0
},
"draw_gaze_position": {
"color": (0, 255, 255),
"size": 2
}
}
@dataclass
class ArFrame():
"""
Defines a rectangular area where to project in timestamped gaze positions and inside which they need to be analyzed.
Parameters:
name: name of the frame
size: defines the dimension of the rectangular area where gaze positions are projected.
gaze_movement_identifier: gaze movement identification algorithm
filter_in_progress_fixation: ignore in progress fixation
scan_path: scan path object
scan_path_analyzers: dictionary of scan path analyzers
heatmap: heatmap object
background: picture to draw behind
layers: dictionary of AOI layers
log: enable scan path analysis logging
image_parameters: default parameters passed to image method
"""
name: str
size: tuple[int] = field(default=(1, 1))
gaze_movement_identifier: GazeFeatures.GazeMovementIdentifier = field(default_factory=GazeFeatures.GazeMovementIdentifier)
filter_in_progress_fixation: bool = field(default=True)
scan_path: GazeFeatures.ScanPath = field(default_factory=GazeFeatures.ScanPath)
scan_path_analyzers: dict = field(default_factory=dict)
heatmap: AOIFeatures.Heatmap = field(default_factory=AOIFeatures.Heatmap)
background: numpy.array = field(default_factory=numpy.array)
layers: dict = field(default_factory=dict)
log: bool = field(default=False)
image_parameters: dict = field(default_factory=DEFAULT_ARFRAME_IMAGE_PARAMETERS)
def __post_init__(self):
# Define parent attribute: it will be setup by parent later
self.__parent = None
# Setup layers parent attribute
for name, layer in self.layers.items():
layer.parent = self
# Init current gaze position
self.__gaze_position = GazeFeatures.UnvalidGazePosition()
# Init lock to share looked data with multiples threads
self.__look_lock = threading.Lock()
# Prepare logging if needed
self.__ts_logs = {}
if self.log:
# Create timestamped buffers to log each aoi scan path analysis
for scan_path_analyzer_module_path in self.scan_path_analyzers.keys():
self.__ts_logs[scan_path_analyzer_module_path] = DataStructures.TimeStampedBuffer()
@classmethod
def from_dict(self, frame_data: dict, working_directory: str = None) -> ArFrameType:
"""Load attributes from dictionary.
Parameters:
frame_data: dictionary with attributes to load
working_directory: folder path where to load files when a dictionary value is a relative filepath.
"""
# Load name
try:
new_frame_name = frame_data.pop('name')
except KeyError:
new_frame_name = None
# Load size
try:
new_frame_size = frame_data.pop('size')
except KeyError:
new_frame_size = (0, 0)
# Load gaze movement identifier
try:
gaze_movement_identifier_value = frame_data.pop('gaze_movement_identifier')
gaze_movement_identifier_module_path, gaze_movement_identifier_parameters = gaze_movement_identifier_value.popitem()
# Prepend argaze.GazeAnalysis path when a single name is provided
if len(gaze_movement_identifier_module_path.split('.')) == 1:
gaze_movement_identifier_module_path = f'argaze.GazeAnalysis.{gaze_movement_identifier_module_path}'
gaze_movement_identifier_module = importlib.import_module(gaze_movement_identifier_module_path)
new_gaze_movement_identifier = gaze_movement_identifier_module.GazeMovementIdentifier(**gaze_movement_identifier_parameters)
except KeyError:
new_gaze_movement_identifier = None
# Current fixation matching
try:
filter_in_progress_fixation = frame_data.pop('filter_in_progress_fixation')
except KeyError:
filter_in_progress_fixation = True
# Load scan path
try:
new_scan_path_data = frame_data.pop('scan_path')
new_scan_path = GazeFeatures.ScanPath(**new_scan_path_data)
except KeyError:
new_scan_path_data = {}
new_scan_path = None
# Load scan path analyzers
new_scan_path_analyzers = {}
try:
new_scan_path_analyzers_value = frame_data.pop('scan_path_analyzers')
for scan_path_analyzer_module_path, scan_path_analyzer_parameters in new_scan_path_analyzers_value.items():
# Prepend argaze.GazeAnalysis path when a single name is provided
if len(scan_path_analyzer_module_path.split('.')) == 1:
scan_path_analyzer_module_path = f'argaze.GazeAnalysis.{scan_path_analyzer_module_path}'
scan_path_analyzer_module = importlib.import_module(scan_path_analyzer_module_path)
# Check scan path analyzer parameters type
members = getmembers(scan_path_analyzer_module.ScanPathAnalyzer)
for member in members:
if '__annotations__' in member:
for parameter, parameter_type in member[1].items():
# Check if parameter is part of a package
if len(parameter_type.__module__.split('.')) > 1:
# Try get existing analyzer instance to append as parameter
try:
scan_path_analyzer_parameters[parameter] = new_scan_path_analyzers[parameter_type.__module__]
except KeyError:
raise LoadingFailed(f'{scan_path_analyzer_module_path} scan path analyzer loading fails because {parameter_type.__module__} scan path analyzer is missing.')
scan_path_analyzer = scan_path_analyzer_module.ScanPathAnalyzer(**scan_path_analyzer_parameters)
new_scan_path_analyzers[scan_path_analyzer_module_path] = scan_path_analyzer
# Force scan path creation
if len(new_scan_path_analyzers) > 0 and new_scan_path == None:
new_scan_path = GazeFeatures.ScanPath(**new_scan_path_data)
except KeyError:
pass
# Load heatmap
try:
new_heatmap_data = frame_data.pop('heatmap')
# Default heatmap size equals frame size
if 'size' not in new_heatmap_data.keys():
new_heatmap_data['size'] = new_frame_size
new_heatmap = AOIFeatures.Heatmap(**new_heatmap_data)
except KeyError:
new_heatmap_data = {}
new_heatmap = None
# Load background image
try:
new_frame_background_value = frame_data.pop('background')
new_frame_background = cv2.imread(os.path.join(working_directory, new_frame_background_value))
new_frame_background = cv2.resize(new_frame_background, dsize=new_frame_size, interpolation=cv2.INTER_CUBIC)
except KeyError:
new_frame_background = numpy.full((new_frame_size[1], new_frame_size[0], 3), 127).astype(numpy.uint8)
# Load layers
new_layers = {}
try:
for layer_name, layer_data in frame_data.pop('layers').items():
# Append name
layer_data['name'] = layer_name
# Create layer
new_layer = ArLayer.from_dict(layer_data, working_directory)
# Project 3D aoi scene layer to get only 2D aoi scene
if new_layer.aoi_scene.dimension == 3:
new_layer.aoi_scene = new_layer.aoi_scene.orthogonal_projection * new_frame_size
# Append new layer
new_layers[layer_name] = new_layer
except KeyError:
pass
# Load log status
try:
new_frame_log = frame_data.pop('log')
except KeyError:
new_frame_log = False
# Load image parameters
try:
new_frame_image_parameters = frame_data.pop('image_parameters')
except KeyError:
new_frame_image_parameters = DEFAULT_ARFRAME_IMAGE_PARAMETERS
# Create frame
return ArFrame(new_frame_name, \
new_frame_size, \
new_gaze_movement_identifier, \
filter_in_progress_fixation, \
new_scan_path, \
new_scan_path_analyzers, \
new_heatmap, \
new_frame_background, \
new_layers, \
new_frame_log,
new_frame_image_parameters \
)
@classmethod
def from_json(self, json_filepath: str) -> ArFrameType:
"""
Load attributes from .json file.
Parameters:
json_filepath: path to json file
"""
with open(json_filepath) as configuration_file:
frame_data = json.load(configuration_file)
working_directory = os.path.dirname(json_filepath)
return ArFrame.from_dict(frame_data, working_directory)
@property
def parent(self):
"""Get parent instance"""
return self.__parent
@parent.setter
def parent(self, parent):
"""Get parent instance"""
self.__parent = parent
@property
def logs(self):
"""
Get stored logs
"""
return self.__ts_logs
def look(self, timestamp: int|float, gaze_position: GazeFeatures.GazePosition = GazeFeatures.UnvalidGazePosition()) -> Tuple[GazeFeatures.GazeMovement, dict, dict, dict]:
"""
Project gaze position into frame.
!!! warning
Be aware that gaze positions are in the same range of value than size attribute.
Parameters:
timestamp:
gaze_position: gaze position to project
Returns:
identified_gaze_movement: identified gaze movement from incoming consecutive timestamped gaze positions if gaze_movement_identifier is instanciated. Current gaze movement if filter_in_progress_fixation is True.
scan_path_analysis: scan path analysis at each new scan step if scan_path is instanciated
exception: error catched during gaze position processing
"""
# Lock frame exploitation
self.__look_lock.acquire()
# Update current gaze position
self.__gaze_position = gaze_position
# No gaze movement identified by default
identified_gaze_movement = GazeFeatures.UnvalidGazeMovement()
# Init scan path analysis report
scan_step_analysis = {}
# Init layer analysis report
layer_analysis = {}
# Assess pipeline execution times
execution_times = {
'gaze_movement_identifier': None,
'scan_step_analyzers':{},
'heatmap': None,
'layers': {}
}
# Catch any error
exception = None
try:
# Identify gaze movement
if self.gaze_movement_identifier is not None:
# Store movement identification start date
identification_start = time.perf_counter()
# Identify finished gaze movement
identified_gaze_movement = self.gaze_movement_identifier.identify(timestamp, self.__gaze_position)
# Assess movement identification time in ms
execution_times['gaze_movement_identifier'] = (time.perf_counter() - identification_start) * 1e3
# Valid and finished gaze movement has been identified
if identified_gaze_movement.valid and identified_gaze_movement.finished:
if GazeFeatures.is_fixation(identified_gaze_movement):
# Append fixation to scan path
if self.scan_path is not None:
self.scan_path.append_fixation(timestamp, identified_gaze_movement)
elif GazeFeatures.is_saccade(identified_gaze_movement):
# Append saccade to scan path
if self.scan_path is not None:
scan_step = self.scan_path.append_saccade(timestamp, identified_gaze_movement)
# Is there a new step?
if scan_step and len(self.scan_path) > 1:
for scan_path_analyzer_module_path, scan_path_analyzer in self.scan_path_analyzers.items():
# Store scan step analysis start date
scan_step_analysis_start = time.perf_counter()
# Analyze aoi scan path
scan_path_analyzer.analyze(self.scan_path)
# Assess scan step analysis time in ms
execution_times['scan_step_analyzers'][scan_path_analyzer_module_path] = (time.perf_counter() - scan_step_analysis_start) * 1e3
# Store analysis
scan_step_analysis[scan_path_analyzer_module_path] = scan_path_analyzer.analysis
# Log analysis
if self.log:
self.__ts_logs[scan_path_analyzer_module_path][timestamp] = scan_path_analyzer.analysis
# No valid finished gaze movement: optionnaly stop in progress fixation filtering
elif self.gaze_movement_identifier is not None and not self.filter_in_progress_fixation:
current_fixation = self.gaze_movement_identifier.current_fixation
if current_fixation.valid:
identified_gaze_movement = current_fixation
# Update heatmap
if self.heatmap is not None:
# Store heatmap start date
heatmap_start = time.perf_counter()
# Scale gaze position value
scale = numpy.array([self.heatmap.size[0] / self.size[0], self.heatmap.size[1] / self.size[1]])
# Update heatmap image
self.heatmap.update(self.__gaze_position.value * scale)
# Assess heatmap time in ms
execution_times['heatmap'] = (time.perf_counter() - heatmap_start) * 1e3
# Look layers
for layer_name, layer in self.layers.items():
looked_aoi, aoi_scan_path_analysis, layer_execution_times, layer_exception = layer.look(timestamp, identified_gaze_movement)
layer_analysis[layer_name] = aoi_scan_path_analysis
execution_times['layers'][layer_name] = layer_execution_times
if layer_exception:
raise(layer_exception)
except Exception as e:
print('Warning: the following error occurs in ArFrame.look method:', e)
identified_gaze_movement = GazeFeatures.UnvalidGazeMovement()
scan_step_analysis = {}
layer_analysis = {}
exception = e
# Unlock frame exploitation
self.__look_lock.release()
# Sum all execution times
total_execution_time = 0
if execution_times['gaze_movement_identifier']:
total_execution_time += execution_times['gaze_movement_identifier']
for _, scan_step_analysis_time in execution_times['scan_step_analyzers'].items():
total_execution_time += scan_step_analysis_time
if execution_times['heatmap']:
total_execution_time += execution_times['heatmap']
for _, layer_execution_times in execution_times['layers'].items():
total_execution_time += layer_execution_times['total']
execution_times['total'] = total_execution_time
# Return look data
return identified_gaze_movement, scan_step_analysis, layer_analysis, execution_times, exception
def image(self, background_weight: float = None, heatmap_weight: float = None, draw_scan_path: dict = None, draw_layers: dict = None, draw_gaze_position: dict = None) -> numpy.array:
"""
Get background image with overlaid visualisations.
Parameters:
background_weight: weight of background overlay
heatmap_weight: weight of heatmap overlay
draw_scan_path: GazeFeatures.ScanPath.draw parameters (if None, no scan path is drawn)
draw_layers: dictionary of ArLayer.draw parameters per layer (if None, no layer is drawn)
draw_gaze_position: GazeFeatures.GazePosition parameters (if None, no gaze position is drawn)
"""
# Use image_parameters attribute if no parameters
if background_weight is None and heatmap_weight is None and draw_scan_path is None and draw_layers is None and draw_gaze_position is None:
return self.image(**self.image_parameters)
# Lock frame exploitation
self.__look_lock.acquire()
# Draw background only
if background_weight is not None and heatmap_weight is None:
image = self.background.copy()
# Draw mix background and heatmap if required
elif background_weight is not None and heatmap_weight is not None and self.heatmap:
background_image = self.background.copy()
heatmap_image = cv2.resize(self.heatmap.image, dsize=self.size, interpolation=cv2.INTER_LINEAR)
image = cv2.addWeighted(heatmap_image, heatmap_weight, background_image, background_weight, 0)
# Draw heatmap only
elif background_weight is None and heatmap_weight is not None and self.heatmap:
image = cv2.resize(self.heatmap.image, dsize=self.size, interpolation=cv2.INTER_LINEAR)
# Draw black image
else:
image = numpy.full((self.size[1], self.size[0], 3), 0).astype(numpy.uint8)
# Draw scan path if required
if draw_scan_path is not None and self.scan_path is not None:
self.scan_path.draw(image, **draw_scan_path)
# Draw layers if required
if draw_layers is not None:
for layer_name, draw_layer in draw_layers.items():
self.layers[layer_name].draw(image, **draw_layer)
# Draw current gaze position if required
if draw_gaze_position is not None:
self.__gaze_position.draw(image, **draw_gaze_position)
# Unlock frame exploitation
self.__look_lock.release()
return image
@dataclass
class ArScene():
"""
Define an Augmented Reality scene with ArUcoMarkers, ArLayers and ArFrames inside.
Parameters:
name: name of the scene
aruco_scene: ArUco markers 3D scene description used to estimate scene pose from detected markers: see [estimate_pose][argaze.ArFeatures.ArScene.estimate_pose] function below.
layers: dictionary of ArLayers to project once the pose is estimated: see [project][argaze.ArFeatures.ArScene.project] function below.
frames: dictionary to ArFrames to project once the pose is estimated: see [project][argaze.ArFeatures.ArScene.project] function below.
aruco_axis: Optional dictionary to define orthogonal axis where each axis is defined by list of 3 markers identifier (first is origin). \
This pose estimation strategy is used by [estimate_pose][argaze.ArFeatures.ArScene.estimate_pose] function when at least 3 markers are detected.
aruco_aoi: Optional dictionary of AOI defined by list of markers identifier and markers corners index tuples: see [build_aruco_aoi_scene][argaze.ArFeatures.ArScene.build_aruco_aoi_scene] function below.
angle_tolerance: Optional angle error tolerance to validate marker pose in degree used into [estimate_pose][argaze.ArFeatures.ArScene.estimate_pose] function.
distance_tolerance: Optional distance error tolerance to validate marker pose in centimeter used into [estimate_pose][argaze.ArFeatures.ArScene.estimate_pose] function.
"""
name: str
aruco_scene: ArUcoScene.ArUcoScene = field(default_factory=ArUcoScene.ArUcoScene)
layers: dict = field(default_factory=dict)
frames: dict = field(default_factory=dict)
aruco_axis: dict = field(default_factory=dict)
aruco_aoi: dict = field(default_factory=dict)
angle_tolerance: float = field(default=0.)
distance_tolerance: float = field(default=0.)
def __post_init__(self):
# Define parent attribute: it will be setup by parent object later
self.__parent = None
# Setup layer parent attribute
for name, layer in self.layers.items():
layer.parent = self
# Setup frame parent attribute
for name, frame in self.frames.items():
frame.parent = self
# Preprocess orthogonal projection to speed up further processings
self.__orthogonal_projection_cache = {}
for layer_name, layer in self.layers.items():
self.__orthogonal_projection_cache[layer_name] = layer.aoi_scene.orthogonal_projection
def __str__(self) -> str:
"""
Returns:
String representation
"""
output = f'parent:\n{self.parent.name}\n'
output += f'ArUcoScene:\n{self.aruco_scene}\n'
if len(self.layers):
output += f'ArLayers:\n'
for name, layer in self.layers.items():
output += f'{name}:\n{layer}\n'
if len(self.frames):
output += f'ArFrames:\n'
for name, frame in self.frames.items():
output += f'{name}:\n{frame}\n'
return output
@property
def parent(self):
"""Get parent instance"""
return self.__parent
@parent.setter
def parent(self, parent):
"""Get parent instance"""
self.__parent = parent
@classmethod
def from_dict(self, scene_data, working_directory: str = None) -> ArSceneType:
# Load name
try:
new_scene_name = scene_data.pop('name')
except KeyError:
new_scene_name = None
# Load aruco scene
try:
# Check aruco_scene value type
aruco_scene_value = scene_data.pop('aruco_scene')
# str: relative path to .obj file
if type(aruco_scene_value) == str:
aruco_scene_value = os.path.join(working_directory, aruco_scene_value)
new_aruco_scene = ArUcoScene.ArUcoScene.from_obj(aruco_scene_value)
# dict:
else:
new_aruco_scene = ArUcoScene.ArUcoScene(**aruco_scene_value)
except KeyError:
new_aruco_scene = None
# Load layers
new_layers = {}
try:
for layer_name, layer_data in scene_data.pop('layers').items():
# Append name
layer_data['name'] = layer_name
# Create layer
new_layer = ArLayer.from_dict(layer_data, working_directory)
# Append new layer
new_layers[layer_name] = new_layer
except KeyError:
pass
# Load frames
new_frames = {}
try:
for frame_name, frame_data in scene_data.pop('frames').items():
# Append name
frame_data['name'] = frame_name
# Create frame
new_frame = ArFrame.from_dict(frame_data, working_directory)
# Look for AOI with same frame name
aoi_frame = None
aoi_frame_found = False
for layer_name, layer in new_layers.items():
try:
aoi_frame = layer.aoi_scene[frame_name]
aoi_frame_found = True
except KeyError:
# AOI name should be unique
break
if aoi_frame_found:
# Project and reframe each layers into corresponding frame layers
for frame_layer_name, frame_layer in new_frame.layers.items():
try:
layer = new_layers[frame_layer_name]
layer_aoi_scene_projection = layer.aoi_scene.orthogonal_projection
aoi_frame_projection = layer_aoi_scene_projection[frame_name]
frame_layer.aoi_scene = layer_aoi_scene_projection.reframe(aoi_frame_projection, new_frame.size)
if frame_layer.aoi_scan_path is not None:
# Edit expected AOI list by removing AOI with name equals to frame layer name
expected_aois = list(layer.aoi_scene.keys())
if frame_layer_name in expected_aois:
expected_aois.remove(frame_layer_name)
frame_layer.aoi_scan_path.expected_aois = expected_aois
except KeyError:
continue
# Append new frame
new_frames[frame_name] = new_frame
except KeyError:
pass
return ArScene(new_scene_name, new_aruco_scene, new_layers, new_frames, **scene_data)
def estimate_pose(self, detected_markers) -> Tuple[numpy.array, numpy.array, str, dict]:
"""Estimate scene pose from detected ArUco markers.
Returns:
scene translation vector
scene rotation matrix
pose estimation strategy
dict of markers used to estimate the pose
"""
# Pose estimation fails when no marker is detected
if len(detected_markers) == 0:
raise PoseEstimationFailed('No marker detected')
scene_markers, _ = self.aruco_scene.filter_markers(detected_markers)
# Pose estimation fails when no marker belongs to the scene
if len(scene_markers) == 0:
raise PoseEstimationFailed('No marker belongs to the scene')
# Estimate scene pose from unique marker transformations
elif len(scene_markers) == 1:
marker_id, marker = scene_markers.popitem()
tvec, rmat = self.aruco_scene.estimate_pose_from_single_marker(marker)
return tvec, rmat, 'estimate_pose_from_single_marker', {marker_id: marker}
# Try to estimate scene pose from 3 markers defining an orthogonal axis
elif len(scene_markers) >= 3 and len(self.aruco_axis) > 0:
for axis_name, axis_markers in self.aruco_axis.items():
try:
origin_marker = scene_markers[axis_markers['origin_marker']]
horizontal_axis_marker = scene_markers[axis_markers['horizontal_axis_marker']]
vertical_axis_marker = scene_markers[axis_markers['vertical_axis_marker']]
tvec, rmat = self.aruco_scene.estimate_pose_from_axis_markers(origin_marker, horizontal_axis_marker, vertical_axis_marker)
return tvec, rmat, 'estimate_pose_from_axis_markers', {origin_marker.identifier: origin_marker, horizontal_axis_marker.identifier: horizontal_axis_marker, vertical_axis_marker.identifier: vertical_axis_marker}
except:
pass
raise PoseEstimationFailed('No marker axis')
# Otherwise, check markers consistency
consistent_markers, unconsistent_markers, unconsistencies = self.aruco_scene.check_markers_consistency(scene_markers, self.angle_tolerance, self.distance_tolerance)
# Pose estimation fails when no marker passes consistency checking
if len(consistent_markers) == 0:
raise PoseEstimationFailed('Unconsistent marker poses', unconsistencies)
# Otherwise, estimate scene pose from all consistent markers pose
tvec, rmat = self.aruco_scene.estimate_pose_from_markers(consistent_markers)
return tvec, rmat, 'estimate_pose_from_markers', consistent_markers
def project(self, tvec: numpy.array, rvec: numpy.array, visual_hfov: float = 0.) -> Tuple[str, AOI2DScene.AOI2DScene]:
"""Project layers according estimated pose and optional horizontal field of view clipping angle.
Parameters:
tvec: translation vector
rvec: rotation vector
visual_hfov: horizontal field of view clipping angle
Returns:
layer_name: name of projected layer
layer_projection: AOI2DScene projection
"""
for name, layer in self.layers.items():
# Clip AOI out of the visual horizontal field of view (optional)
if visual_hfov > 0:
# Transform layer aoi scene into camera referential
aoi_scene_camera_ref = layer.aoi_scene.transform(tvec, rvec)
# Get aoi inside vision cone field
cone_vision_height_cm = 200 # cm
cone_vision_radius_cm = numpy.tan(numpy.deg2rad(visual_hfov / 2)) * cone_vision_height_cm
_, aoi_outside = aoi_scene_camera_ref.vision_cone(cone_vision_radius_cm, cone_vision_height_cm)
# Keep only aoi inside vision cone field
aoi_scene_copy = layer.aoi_scene.copy(exclude=aoi_outside.keys())
else:
aoi_scene_copy = layer.aoi_scene.copy()
# Project layer aoi scene
yield name, aoi_scene_copy.project(tvec, rvec, self.parent.aruco_detector.optic_parameters.K)
def build_aruco_aoi_scene(self, detected_markers) -> AOI2DScene.AOI2DScene:
"""
Build AOI scene from detected ArUco markers as defined in aruco_aoi dictionary.
Returns:
aoi_2d_scene: built AOI 2D scene
"""
# ArUco aoi must be defined
assert(self.aruco_aoi)
# AOI projection fails when no marker is detected
if len(detected_markers) == 0:
raise SceneProjectionFailed('No marker detected')
aruco_aoi_scene = {}
for aruco_aoi_name, aoi in self.aruco_aoi.items():
# Each aoi's corner is defined by a marker's corner
aoi_corners = []
for corner in ["upper_left_corner", "upper_right_corner", "lower_right_corner", "lower_left_corner"]:
marker_identifier = aoi[corner]["marker_identifier"]
try:
aoi_corners.append(detected_markers[marker_identifier].corners[0][aoi[corner]["marker_corner_index"]])
except Exception as e:
raise SceneProjectionFailed(f'Missing marker #{e} to build ArUco AOI scene')
aruco_aoi_scene[aruco_aoi_name] = AOIFeatures.AreaOfInterest(aoi_corners)
# Then each inner aoi is projected from the current aruco aoi
for inner_aoi_name, inner_aoi in self.aoi_3d_scene.items():
if aruco_aoi_name != inner_aoi_name:
aoi_corners = [numpy.array(aruco_aoi_scene[aruco_aoi_name].outter_axis(inner)) for inner in self.__orthogonal_projection_cache[inner_aoi_name]]
aruco_aoi_scene[inner_aoi_name] = AOIFeatures.AreaOfInterest(aoi_corners)
return AOI2DScene.AOI2DScene(aruco_aoi_scene)
def draw_axis(self, image: numpy.array):
"""
Draw scene axis into image.
Parameters:
image: where to draw
"""
self.aruco_scene.draw_axis(image, self.parent.aruco_detector.optic_parameters.K, self.parent.aruco_detector.optic_parameters.D)
def draw_places(self, image: numpy.array):
"""
Draw scene places into image.
Parameters:
image: where to draw
"""
self.aruco_scene.draw_places(image, self.parent.aruco_detector.optic_parameters.K, self.parent.aruco_detector.optic_parameters.D)
# Define default ArEnvironment image_paremeters values
DEFAULT_ARENVIRONMENT_IMAGE_PARAMETERS = {
"draw_detected_markers": {
"color": (0, 255, 0),
"draw_axes": {
"thickness": 3
}
}
}
@dataclass
class ArEnvironment():
"""
Define Augmented Reality environment based on ArUco marker detection.
Parameters:
name: environment name
aruco_detector: ArUco marker detector
camera_frame: where to project scenes
scenes: all environment scenes
"""
name: str
aruco_detector: ArUcoDetector.ArUcoDetector = field(default_factory=ArUcoDetector.ArUcoDetector)
camera_frame: ArFrame = field(default_factory=ArFrame)
scenes: dict = field(default_factory=dict)
image_parameters: dict = field(default_factory=DEFAULT_ARENVIRONMENT_IMAGE_PARAMETERS)
def __post_init__(self):
# Setup camera frame parent attribute
if self.camera_frame is not None:
self.camera_frame.parent = self
# Setup scenes parent attribute
for name, scene in self.scenes.items():
scene.parent = self
# Init a lock to share AOI scene projections into camera frame between multiple threads
self.__camera_frame_lock = threading.Lock()
# Define public timestamp buffer to store ignored gaze positions
self.ignored_gaze_positions = GazeFeatures.TimeStampedGazePositions()
@classmethod
def from_dict(self, environment_data, working_directory: str = None) -> ArEnvironmentType:
new_environment_name = environment_data.pop('name')
try:
new_detector_data = environment_data.pop('aruco_detector')
new_aruco_dictionary = ArUcoMarkersDictionary.ArUcoMarkersDictionary(**new_detector_data.pop('dictionary'))
new_marker_size = new_detector_data.pop('marker_size')
# Check optic_parameters value type
optic_parameters_value = new_detector_data.pop('optic_parameters')
# str: relative path to .json file
if type(optic_parameters_value) == str:
optic_parameters_value = os.path.join(working_directory, optic_parameters_value)
new_optic_parameters = ArUcoOpticCalibrator.OpticParameters.from_json(optic_parameters_value)
# dict:
else:
new_optic_parameters = ArUcoOpticCalibrator.OpticParameters(**optic_parameters_value)
# Check detector parameters value type
detector_parameters_value = new_detector_data.pop('parameters')
# str: relative path to .json file
if type(detector_parameters_value) == str:
detector_parameters_value = os.path.join(working_directory, detector_parameters_value)
new_aruco_detector_parameters = ArUcoDetector.DetectorParameters.from_json(detector_parameters_value)
# dict:
else:
new_aruco_detector_parameters = ArUcoDetector.DetectorParameters(**detector_parameters_value)
new_aruco_detector = ArUcoDetector.ArUcoDetector(new_aruco_dictionary, new_marker_size, new_optic_parameters, new_aruco_detector_parameters)
except KeyError:
new_aruco_detector = None
# Load camera frame as large as aruco dectector optic parameters
try:
camera_frame_data = environment_data.pop('camera_frame')
# Create camera frame
new_camera_frame = ArFrame.from_dict(camera_frame_data, working_directory)
# Setup camera frame
new_camera_frame.name = new_environment_name
new_camera_frame.size = new_optic_parameters.dimensions
new_camera_frame.background = numpy.zeros((new_optic_parameters.dimensions[1], new_optic_parameters.dimensions[0], 3)).astype(numpy.uint8)
except KeyError:
new_camera_frame = None
# Build scenes
new_scenes = {}
for scene_name, scene_data in environment_data.pop('scenes').items():
# Append name
scene_data['name'] = scene_name
# Create new scene
new_scene = ArScene.from_dict(scene_data, working_directory)
# Append new scene
new_scenes[scene_name] = new_scene
# Setup expected aoi of each camera frame layer aoi scan path with the aoi of corresponding scene layer
if new_camera_frame is not None:
for camera_frame_layer_name, camera_frame_layer in new_camera_frame.layers.items():
if camera_frame_layer.aoi_scan_path is not None:
all_aoi_list = []
for scene_name, scene in new_scenes.items():
try:
scene_layer = scene.layers[camera_frame_layer_name]
all_aoi_list.extend(list(scene_layer.aoi_scene.keys()))
except KeyError:
continue
camera_frame_layer.aoi_scan_path.expected_aois = all_aoi_list
# Load environment image parameters
try:
new_environment_image_parameters = environment_data.pop('image_parameters')
except KeyError:
new_environment_image_parameters = DEFAULT_ARENVIRONMENT_IMAGE_PARAMETERS
# Create new environment
return ArEnvironment(new_environment_name, \
new_aruco_detector, \
new_camera_frame, \
new_scenes, \
new_environment_image_parameters \
)
@classmethod
def from_json(self, json_filepath: str) -> ArEnvironmentType:
"""
Load ArEnvironment from .json file.
Parameters:
json_filepath: path to json file
"""
with open(json_filepath) as configuration_file:
environment_data = json.load(configuration_file)
working_directory = os.path.dirname(json_filepath)
return ArEnvironment.from_dict(environment_data, working_directory)
def __str__(self) -> str:
"""
Returns:
String representation
"""
output = f'Name:\n{self.name}\n'
output += f'ArUcoDetector:\n{self.aruco_detector}\n'
for name, scene in self.scenes.items():
output += f'\"{name}\" ArScene:\n{scene}\n'
return output
@property
def frames(self):
"""Iterate over all environment scenes frames"""
# For each scene
for scene_name, scene in self.scenes.items():
# For each frame
for name, frame in scene.frames.items():
yield frame
def detect_and_project(self, image: numpy.array) -> Tuple[float, dict]:
"""Detect environment aruco markers from image and project scenes into camera frame.
Returns:
- detection_time: aruco marker detection time in ms
- exceptions: dictionary with exception raised per scene
"""
# Detect aruco markers
detection_time = self.aruco_detector.detect_markers(image)
# Lock camera frame exploitation
self.__camera_frame_lock.acquire()
# Fill camera frame background with image
self.camera_frame.background = image
# Clear former layers projection into camera frame
for came_layer_name, camera_layer in self.camera_frame.layers.items():
camera_layer.aoi_scene = AOI2DScene.AOI2DScene()
# Store exceptions for each scene
exceptions = {}
# Project each aoi 3d scene into camera frame
for scene_name, scene in self.scenes.items():
''' TODO: Enable aruco_aoi processing
if scene.aruco_aoi:
try:
# Build AOI scene directly from detected ArUco marker corners
self.camera_frame.aoi_2d_scene |= scene.build_aruco_aoi_scene(self.aruco_detector.detected_markers)
except SceneProjectionFailed:
pass
'''
try:
# Estimate scene markers poses
self.aruco_detector.estimate_markers_pose(scene.aruco_scene.identifiers)
# Estimate scene pose from detected scene markers
tvec, rmat, _, _ = scene.estimate_pose(self.aruco_detector.detected_markers)
# Project scene into camera frame according estimated pose
for layer_name, layer_projection in scene.project(tvec, rmat):
try:
self.camera_frame.layers[layer_name].aoi_scene |= layer_projection
except KeyError:
pass
# Store exceptions and continue
except Exception as e:
exceptions[scene_name] = e
# Unlock camera frame exploitation
self.__camera_frame_lock.release()
# Return dection time and exceptions
return detection_time, exceptions
def look(self, timestamp: int|float, gaze_position: GazeFeatures.GazePosition):
"""Project timestamped gaze position into each frame.
!!! warning detect_and_project method needs to be called first.
"""
# Can't use camera frame when it is locked
if self.__camera_frame_lock.locked():
# TODO: Store ignored timestamped gaze positions for further projections
# PB: This would imply to also store frame projections !!!
self.ignored_gaze_positions[timestamp] = gaze_position
return
# Lock camera frame exploitation
self.__camera_frame_lock.acquire()
# Project gaze position into camera frame
yield self.camera_frame, self.camera_frame.look(timestamp, gaze_position)
# Project gaze position into each frame if possible
for frame in self.frames:
# Is there an AOI inside camera frame layers projection which its name equals to a frame name?
for camera_layer_name, camera_layer in self.camera_frame.layers.items():
try:
aoi_2d = camera_layer.aoi_scene[frame.name]
# TODO?: Should we prefer to use camera frame AOIMatcher object?
if aoi_2d.contains_point(gaze_position.value):
inner_x, inner_y = aoi_2d.clockwise().inner_axis(gaze_position.value)
# QUESTION: How to project gaze precision?
inner_gaze_position = GazeFeatures.GazePosition((inner_x, inner_y))
yield frame, frame.look(timestamp, inner_gaze_position * frame.size)
# Ignore missing aoi in camera frame layer projection
except KeyError:
pass
# Unlock camera frame exploitation
self.__camera_frame_lock.release()
def map(self):
"""Project camera frame background into frames background.
.. warning:: detect_and_project method needs to be called first.
"""
# Can't use camera frame when it is locked
if self.__camera_frame_lock.locked():
return
# Lock camera frame exploitation
self.__camera_frame_lock.acquire()
# Project image into each frame if possible
for frame in self.frames:
# Is there an AOI inside camera frame layers projection which its name equals to a frame name?
for camera_layer_name, camera_layer in self.camera_frame.layers.items():
try:
aoi_2d = camera_layer.aoi_scene[frame.name]
# Apply perspective transform algorithm to fill aoi frame background
width, height = frame.size
destination = numpy.float32([[0, height],[width, height],[width, 0],[0, 0]])
mapping = cv2.getPerspectiveTransform(aoi_2d.astype(numpy.float32), destination)
frame.background = cv2.warpPerspective(self.camera_frame.background, mapping, (width, height))
# Ignore missing frame projection
except KeyError:
pass
# Unlock camera frame exploitation
self.__camera_frame_lock.release()
def image(self, draw_detected_markers: dict = None):
"""Get camera frame projections with ArUco detection visualisation.
Parameters:
image: image where to draw
draw_detected_markers: ArucoMarker.draw parameters (if None, no marker drawn)
"""
# Use image_parameters attribute if no parameters
if draw_detected_markers is None:
return self.image(**self.image_parameters)
# Can't use camera frame when it is locked
if self.__camera_frame_lock.locked():
return
# Lock camera frame exploitation
self.__camera_frame_lock.acquire()
# Get camera frame image
image = self.camera_frame.image()
# Draw detected markers if required
if draw_detected_markers is not None:
self.aruco_detector.draw_detected_markers(image, draw_detected_markers)
# Unlock camera frame exploitation
self.__camera_frame_lock.release()
return image
def to_json(self, json_filepath):
"""Save environment to .json file."""
with open(json_filepath, 'w', encoding='utf-8') as file:
json.dump(self, file, ensure_ascii=False, indent=4, cls=DataStructures.JsonEncoder)
|