1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
|
"""ArGaze pipeline assets."""
"""
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see <https://www.gnu.org/licenses/>.
"""
__author__ = "Théo de la Hogue"
__credits__ = []
__copyright__ = "Copyright 2023, Ecole Nationale de l'Aviation Civile (ENAC)"
__license__ = "GPLv3"
import logging
import threading
import math
import os
import ast
from typing import Iterator, Union
import cv2
import numpy
from argaze import DataFeatures, GazeFeatures
from argaze.AreaOfInterest import *
from argaze.utils import UtilsFeatures
class PoseEstimationFailed(Exception):
"""
Exception raised by ArScene estimate_pose method when the pose can't be estimated due to inconsistencies.
"""
def __init__(self, message, inconsistencies=None):
super().__init__(message)
self.inconsistencies = inconsistencies
class SceneProjectionFailed(Exception):
"""
Exception raised by ArCamera watch method when the scene can't be projected.
"""
def __init__(self, message):
super().__init__(message)
class DrawingFailed(Exception):
"""
Exception raised when drawing fails.
"""
def __init__(self, message):
super().__init__(message)
# Define default ArLayer draw parameters
DEFAULT_ARLAYER_DRAW_PARAMETERS = {
"draw_aoi_scene": {
"draw_aoi": {
"color": (255, 255, 255),
"border_size": 1
}
},
"draw_aoi_matching": {
"draw_matched_fixation": {
"deviation_circle_color": (255, 255, 255)
},
"draw_matched_fixation_positions": {
"position_color": (0, 255, 255),
"line_color": (0, 0, 0)
},
"draw_matched_region": {
"color": (0, 255, 0),
"border_size": 4
},
"draw_looked_aoi": {
"color": (0, 255, 0),
"border_size": 2
},
"looked_aoi_name_color": (255, 255, 255),
"looked_aoi_name_offset": (0, -10)
}
}
class ArLayer(DataFeatures.SharedObject, DataFeatures.PipelineStepObject):
"""
Defines a space where to make matching of gaze movements and AOI and inside which those matching need to be analyzed.
!!! note
Inherits from DataFeatures.SharedObject class to be shared by multiple threads.
"""
@DataFeatures.PipelineStepInit
def __init__(self, **kwargs):
"""Initialize ArLayer."""
# Init parent classes
DataFeatures.SharedObject.__init__(self)
# Init private attributes
self.__aoi_scene = None
self.__aoi_matcher = None
self.__aoi_scan_path = None
self.__aoi_scan_path_analyzers = []
self.__gaze_movement = GazeFeatures.GazeMovement()
self.__looked_aoi_name = None
self.__aoi_scan_path_analyzed = False
# Init pipeline step object attributes
self.draw_parameters = DEFAULT_ARLAYER_DRAW_PARAMETERS
@property
def aoi_scene(self) -> AOIFeatures.AOIScene:
"""AOI scene description."""
return self.__aoi_scene
@aoi_scene.setter
def aoi_scene(self, aoi_scene_value: AOIFeatures.AOIScene | str | dict):
new_aoi_scene = None
if issubclass(type(aoi_scene_value), AOIFeatures.AOIScene):
new_aoi_scene = aoi_scene_value
# str: relative path to file
elif type(aoi_scene_value) is str:
filepath = os.path.join(DataFeatures.get_working_directory(), aoi_scene_value)
file_format = filepath.split('.')[-1]
# JSON file format for 2D or 3D dimension
if file_format == 'json':
new_aoi_scene = AOIFeatures.AOIScene.from_json(filepath)
# SVG file format for 2D dimension only
if file_format == 'svg':
new_aoi_scene = AOI2DScene.AOI2DScene.from_svg(filepath)
# OBJ file format for 3D dimension only
elif file_format == 'obj':
new_aoi_scene = AOI3DScene.AOI3DScene.from_obj(filepath)
# dict:
elif type(aoi_scene_value) is dict:
new_aoi_scene = AOIFeatures.AOIScene.from_dict(aoi_scene_value)
else:
raise ValueError("Bad aoi scene value")
# Cast aoi scene to its effective dimension
if new_aoi_scene.dimension == 2:
self.__aoi_scene = AOI2DScene.AOI2DScene(new_aoi_scene)
elif new_aoi_scene.dimension == 3:
self.__aoi_scene = AOI3DScene.AOI3DScene(new_aoi_scene)
# Edit parent
if self.__aoi_scene is not None:
self.__aoi_scene.parent = self
@property
def aoi_matcher(self) -> GazeFeatures.AOIMatcher:
"""Select AOI matcher object."""
return self.__aoi_matcher
@aoi_matcher.setter
@DataFeatures.PipelineStepAttributeSetter
def aoi_matcher(self, aoi_matcher: GazeFeatures.AOIMatcher):
assert (issubclass(type(aoi_matcher), GazeFeatures.AOIMatcher))
self.__aoi_matcher = aoi_matcher
# Edit parent
if self.__aoi_matcher is not None:
self.__aoi_matcher.parent = self
@property
def aoi_scan_path(self) -> GazeFeatures.AOIScanPath:
"""AOI scan path object."""
return self.__aoi_scan_path
@aoi_scan_path.setter
@DataFeatures.PipelineStepAttributeSetter
def aoi_scan_path(self, aoi_scan_path: GazeFeatures.AOIScanPath):
assert (isinstance(aoi_scan_path, GazeFeatures.AOIScanPath))
self.__aoi_scan_path = aoi_scan_path
# Update expected AOI
self._update_expected_aoi()
# Edit parent
if self.__aoi_scan_path is not None:
self.__aoi_scan_path.parent = self
@property
def aoi_scan_path_analyzers(self) -> list:
"""AOI scan path analyzers list."""
return self.__aoi_scan_path_analyzers
# noinspection PyUnresolvedReferences
@aoi_scan_path_analyzers.setter
@DataFeatures.PipelineStepAttributeSetter
def aoi_scan_path_analyzers(self, aoi_scan_path_analyzers: list):
self.__aoi_scan_path_analyzers = aoi_scan_path_analyzers
# Connect analyzers if required
for analyzer in self.__aoi_scan_path_analyzers:
assert (issubclass(type(analyzer), GazeFeatures.AOIScanPathAnalyzer))
# Check scan path analyzer properties type
for name, item in type(analyzer).__dict__.items():
if isinstance(item, property) and item.fset is not None:
# Check setter annotations to get expected value type
try:
property_type = list(item.fset.__annotations__.values())[0]
except KeyError:
raise (ValueError(f'Missing annotations in {item.fset.__name__}: {item.fset.__annotations__}'))
if issubclass(property_type, GazeFeatures.AOIScanPathAnalyzer):
# Search for analyzer instance to set property
found = False
for a in self.__aoi_scan_path_analyzers:
if type(a) is property_type:
setattr(analyzer, name, a)
found = True
if not found:
raise DataFeatures.PipelineStepLoadingFailed(f'{type(analyzer)} analyzer loading fails because {property_type} analyzer is missing.')
# Force scan path creation
if len(self.__aoi_scan_path_analyzers) > 0 and self.aoi_scan_path is None:
self.__aoi_scan_path = GazeFeatures.ScanPath()
# Edit parent
for analyzer in self.__aoi_scan_path_analyzers:
analyzer.parent = self
def last_looked_aoi_name(self) -> str:
"""Get last looked aoi name."""
return self.__looked_aoi_name
def is_analysis_available(self) -> bool:
"""Are aoi scan path analysis ready?"""
return self.__aoi_scan_path_analyzed
def analysis(self) -> dict:
"""Get all aoi scan path analysis into dictionary."""
analysis = {}
for analyzer in self.__aoi_scan_path_analyzers:
analysis[DataFeatures.get_class_path(analyzer)] = analyzer.analysis()
return analysis
def as_dict(self) -> dict:
"""Export ArLayer properties as dictionary."""
return {
**DataFeatures.PipelineStepObject.as_dict(self),
"aoi_scene": self.__aoi_scene,
"aoi_matcher": self.__aoi_matcher,
"aoi_scan_path": self.__aoi_scan_path,
"aoi_scan_path_analyzers": self.__aoi_scan_path_analyzers,
"draw_parameters": self._draw_parameters
}
def _update_expected_aoi(self):
"""Update expected AOI of AOI scan path considering AOI scene and layer name."""
if self.__aoi_scene is None:
logging.debug('ArLayer._update_expected_aoi %s (parent: %s): missing aoi scene', self.name, self.parent)
return
logging.debug('ArLayer._update_expected_aoi %s (parent: %s)', self.name, self.parent)
# Get aoi names from aoi scene
expected_aoi = list(self.__aoi_scene.keys())
# Remove layer name from expected aoi
if self.name in expected_aoi:
expected_aoi.remove(self.name)
# Update expected aoi: this will clear the scan path
self.__aoi_scan_path.expected_aoi = expected_aoi
@DataFeatures.PipelineStepMethod
@DataFeatures.PipelineStepExecutionTime
def look(self, gaze_movement: GazeFeatures.GazeMovement = None):
"""
Project timestamped gaze movement into layer.
!!! warning
Be aware that gaze movement positions are in the same range of value than aoi_scene size attribute.
Parameters:
gaze_movement: gaze movement to project
"""
if gaze_movement is None:
gaze_movement = GazeFeatures.GazeMovement()
# Use layer lock feature
with self._lock:
logging.debug('ArLayer.look %s (parent: %s)', self.name, self.parent.name)
# Update current gaze movement
self.__gaze_movement = gaze_movement
# No looked aoi by default
self.__looked_aoi_name = None
# Reset aoi scan path analyzed state
self.__aoi_scan_path_analyzed = False
if self.__aoi_matcher is not None and self.__aoi_scene is not None:
# Update looked aoi thanks to aoi matcher
# Note: don't filter valid/invalid and finished/unfinished fixation/saccade as we don't know how the aoi matcher works internally
self.__looked_aoi_name, _ = self.__aoi_matcher.match(gaze_movement, self.__aoi_scene)
logging.debug('\t> looked aoi name: %s', self.__looked_aoi_name)
# Valid and finished gaze movement has been identified
if gaze_movement and gaze_movement.is_finished():
if GazeFeatures.is_fixation(gaze_movement):
# Append fixation to aoi scan path
# TODO: add an option to filter None looked_aoi_name or not
if self.__aoi_scan_path is not None:
logging.debug('\t> append fixation')
aoi_scan_step = self.__aoi_scan_path.append_fixation(gaze_movement, self.__looked_aoi_name)
# Is there a new step?
if aoi_scan_step is not None and len(self.__aoi_scan_path) > 1:
logging.debug('\t> analyse aoi scan path')
# Analyze aoi scan path
for aoi_scan_path_analyzer in self.__aoi_scan_path_analyzers:
aoi_scan_path_analyzer.analyze(self.__aoi_scan_path, timestamp=gaze_movement.timestamp)
# Update aoi scan path analyzed state
self.__aoi_scan_path_analyzed = True
elif GazeFeatures.is_saccade(gaze_movement):
# Append saccade to aoi scan path
if self.__aoi_scan_path is not None:
logging.debug('\t> append saccade')
self.__aoi_scan_path.append_saccade(gaze_movement)
@DataFeatures.PipelineStepDraw
def draw(self, image: numpy.array, draw_aoi_scene: dict = None, draw_aoi_matching: dict = None):
"""
Draw into image.
Parameters:
image: image where to draw.
draw_aoi_scene: [AOI2DScene.draw][argaze.AreaOfInterest.AOI2DScene.AOI2DScene.draw] parameters (if None, no aoi scene is drawn)
draw_aoi_matching: [AOIMatcher.draw][argaze.GazeFeatures.AOIMatcher.draw] parameters (which depends on the loaded aoi matcher module,
if None, no aoi matching is drawn)
"""
# Use layer lock feature
with self._lock:
# Draw aoi if required
if draw_aoi_scene is not None and self.__aoi_scene is not None:
self.__aoi_scene.draw(image, **draw_aoi_scene)
# Draw aoi matching if required
if draw_aoi_matching is not None and self.__aoi_matcher is not None:
self.__aoi_matcher.draw(image, self.__aoi_scene, **draw_aoi_matching)
# Define default ArFrame image parameters
DEFAULT_ARFRAME_IMAGE_PARAMETERS = {
"background_weight": 1.,
"heatmap_weight": 0.5,
"draw_scan_path": {
"draw_fixations": {
"deviation_circle_color": (255, 255, 255),
"duration_border_color": (127, 127, 127),
"duration_factor": 1e-2
},
"draw_saccades": {
"line_color": (255, 255, 255)
},
"deepness": 0
},
"draw_gaze_positions": {
"color": (0, 255, 255),
"size": 2
}
}
class ArFrame(DataFeatures.SharedObject, DataFeatures.PipelineStepObject):
"""
Defines a rectangular area where to project in timestamped gaze positions and inside which they need to be analyzed.
!!! note
Inherits from DataFeatures.SharedObject class to be shared by multiple threads
"""
@DataFeatures.PipelineStepInit
def __init__(self, **kwargs):
""" Initialize ArFrame."""
# Init parent classes
DataFeatures.SharedObject.__init__(self)
# Init private attributes
self.__size = (1, 1)
self.__gaze_position_calibrator = None
self.__gaze_movement_identifier = None
self.__filter_in_progress_identification = True
self.__scan_path = None
self.__scan_path_analyzers = []
self.__background = DataFeatures.TimestampedImage(numpy.full((1, 1, 3), 127).astype(numpy.uint8))
self.__heatmap = None
self.__calibrated_gaze_position = GazeFeatures.GazePosition()
self.__identified_gaze_movement = GazeFeatures.GazeMovement()
self.__scan_path_analyzed = False
# Init protected attributes
self._layers = {}
self._image_parameters = DEFAULT_ARFRAME_IMAGE_PARAMETERS
@property
def size(self) -> tuple[int, int]:
"""Defines the dimension of the rectangular area where gaze positions are projected."""
return self.__size
@size.setter
def size(self, size: tuple[int, int]):
self.__size = size
if self.background.size != self.__size:
# Resize background to current size
self.background = self.background
@property
def gaze_position_calibrator(self) -> GazeFeatures.GazePositionCalibrator:
"""Select gaze position calibration algorithm."""
return self.__gaze_position_calibrator
@gaze_position_calibrator.setter
@DataFeatures.PipelineStepAttributeSetter
def gaze_position_calibrator(self, gaze_position_calibrator: GazeFeatures.GazePositionCalibrator):
assert (issubclass(type(gaze_position_calibrator), GazeFeatures.GazePositionCalibrator))
self.__gaze_position_calibrator = gaze_position_calibrator
# Edit parent
if self.__gaze_position_calibrator is not None:
self.__gaze_position_calibrator.parent = self
@property
def gaze_movement_identifier(self) -> GazeFeatures.GazeMovementIdentifier:
"""Select gaze movement identification algorithm."""
return self.__gaze_movement_identifier
@gaze_movement_identifier.setter
@DataFeatures.PipelineStepAttributeSetter
def gaze_movement_identifier(self, gaze_movement_identifier: GazeFeatures.GazeMovementIdentifier):
assert (issubclass(type(gaze_movement_identifier), GazeFeatures.GazeMovementIdentifier))
self.__gaze_movement_identifier = gaze_movement_identifier
# Edit parent
if self.__gaze_movement_identifier is not None:
self.__gaze_movement_identifier.parent = self
@property
def filter_in_progress_identification(self) -> bool:
"""Is frame ignores in progress gaze movement identification?"""
return self.__filter_in_progress_identification
@filter_in_progress_identification.setter
@DataFeatures.PipelineStepAttributeSetter
def filter_in_progress_identification(self, filter_in_progress_identification: bool = True):
self.__filter_in_progress_identification = filter_in_progress_identification
@property
def scan_path(self) -> GazeFeatures.ScanPath:
"""Scan path object."""
return self.__scan_path
@scan_path.setter
@DataFeatures.PipelineStepAttributeSetter
def scan_path(self, scan_path: GazeFeatures.ScanPath):
assert (isinstance(scan_path, GazeFeatures.ScanPath))
self.__scan_path = scan_path
# Edit parent
if self.__scan_path is not None:
self.__scan_path.parent = self
@property
def scan_path_analyzers(self) -> list:
"""Scan path analyzers list."""
return self.__scan_path_analyzers
# noinspection PyUnresolvedReferences
@scan_path_analyzers.setter
@DataFeatures.PipelineStepAttributeSetter
def scan_path_analyzers(self, scan_path_analyzers: list):
self.__scan_path_analyzers = scan_path_analyzers
# Connect analyzers if required
for analyzer in self.__scan_path_analyzers:
assert (issubclass(type(analyzer), GazeFeatures.ScanPathAnalyzer))
# Check scan path analyzer properties type
for name, item in type(analyzer).__dict__.items():
if isinstance(item, property) and item.fset is not None:
# Check setter annotations to get expected value type
try:
property_type = list(item.fset.__annotations__.values())[0]
except KeyError:
raise (ValueError(f'Missing annotations in {item.fset.__name__}: {item.fset.__annotations__}'))
if issubclass(property_type, GazeFeatures.AOIScanPathAnalyzer):
# Search for analyzer instance to set property
found = False
for a in self.__scan_path_analyzers:
if type(a) is property_type:
setattr(analyzer, name, a)
found = True
if not found:
raise DataFeatures.PipelineStepLoadingFaile(f'{type(analyzer)} analyzer loading fails because {property_type} analyzer is missing.')
# Force scan path creation
if len(self.__scan_path_analyzers) > 0 and self.__scan_path is None:
self.__scan_path = GazeFeatures.ScanPath()
# Edit parent
for analyzer in self.__scan_path_analyzers:
analyzer.parent = self
@property
def background(self) -> numpy.array:
"""Picture to draw behind."""
return self.__background
@background.setter
@DataFeatures.PipelineStepAttributeSetter
def background(self, background: DataFeatures.TimestampedImage):
assert (isinstance(background, DataFeatures.TimestampedImage))
if background.size != self.size:
# Resize image to frame size
self.__background = DataFeatures.TimestampedImage(cv2.resize(background, dsize=self.size, interpolation=cv2.INTER_CUBIC), timestamp=background.timestamp)
else:
self.__background = background
@property
def heatmap(self) -> AOIFeatures.Heatmap:
"""Heatmap object."""
return self.__heatmap
@heatmap.setter
@DataFeatures.PipelineStepAttributeSetter
def heatmap(self, heatmap: AOIFeatures.Heatmap):
assert (isinstance(heatmap, AOIFeatures.Heatmap))
self.__heatmap = heatmap
# Default heatmap size equals frame size
if self.__heatmap.size == (1, 1):
self.__heatmap.size = self.size
# Edit parent
if self.__heatmap is not None:
self.__heatmap.parent = self
@property
def layers(self) -> dict:
"""Layers dictionary."""
return self._layers
@layers.setter
@DataFeatures.PipelineStepAttributeSetter
def layers(self, layers: dict):
self._layers = {}
for layer_name, layer_data in layers.items():
self._layers[layer_name] = ArLayer(name=layer_name, **layer_data)
# Edit parent
for name, layer in self._layers.items():
layer.parent = self
def last_gaze_position(self) -> object:
"""Get last calibrated gaze position"""
return self.__calibrated_gaze_position
def last_gaze_movement(self) -> object:
"""Get last identified gaze movement"""
return self.__identified_gaze_movement
def is_analysis_available(self) -> bool:
"""Are scan path analysis ready?"""
return self.__scan_path_analyzed
def analysis(self) -> dict:
"""Get all scan path analysis into dictionary."""
analysis = {}
for analyzer in self.__scan_path_analyzers:
analysis[DataFeatures.get_class_path(analyzer)] = analyzer.analysis()
return analysis
def as_dict(self) -> dict:
"""Export ArFrame attributes as dictionary.
Returns:
frame_data: dictionary with frame attributes values.
"""
d = {
**DataFeatures.PipelineStepObject.as_dict(self),
"size": self.__size,
"gaze_position_calibrator": self.__gaze_position_calibrator,
"gaze_movement_identifier": self.__gaze_movement_identifier,
"filter_in_progress_identification": self.__filter_in_progress_identification,
"scan_path": self.__scan_path,
"scan_path_analyzers": self.__scan_path_analyzers,
"background": self.__background,
"heatmap": self.__heatmap,
"layers": self._layers,
"image_parameters": self._image_parameters
}
return d
@DataFeatures.PipelineStepMethod
@DataFeatures.PipelineStepExecutionTime
def look(self, timestamped_gaze_position: GazeFeatures.GazePosition = GazeFeatures.GazePosition()):
"""
Project timestamped gaze position into frame.
!!! warning
Be aware that gaze positions are in the same range of value than size attribute.
Parameters:
timestamped_gaze_position: gaze position to project
"""
# Use frame lock feature
with self._lock:
# No gaze movement identified by default
self.__identified_gaze_movement = GazeFeatures.GazeMovement()
# Reset scan path analyzed state
self.__scan_path_analyzed = False
# Apply gaze position calibration
if self.__gaze_position_calibrator is not None:
self.__calibrated_gaze_position = self.__gaze_position_calibrator.apply(timestamped_gaze_position)
# Or update gaze position at least
else:
self.__calibrated_gaze_position = timestamped_gaze_position
# Identify gaze movement
if self.__gaze_movement_identifier is not None:
# Identify finished gaze movement
self.__identified_gaze_movement = self.__gaze_movement_identifier.identify(self.__calibrated_gaze_position)
# Valid and finished gaze movement has been identified
if self.__identified_gaze_movement and self.__identified_gaze_movement.is_finished():
if GazeFeatures.is_fixation(self.__identified_gaze_movement):
# Append fixation to scan path
if self.__scan_path is not None:
self.__scan_path.append_fixation(self.__identified_gaze_movement)
elif GazeFeatures.is_saccade(self.__identified_gaze_movement):
# Append saccade to scan path
if self.__scan_path is not None:
scan_step = self.__scan_path.append_saccade(self.__identified_gaze_movement)
# Is there a new step?
if scan_step and len(self.__scan_path) > 1:
# Analyze aoi scan path
for scan_path_analyzer in self.__scan_path_analyzers:
scan_path_analyzer.analyze(self.__scan_path, timestamp=self.__identified_gaze_movement.timestamp)
# Update scan path analyzed state
self.__scan_path_analyzed = True
# No valid finished gaze movement: optionally stop in progress identification filtering
elif self.__gaze_movement_identifier is not None and not self.__filter_in_progress_identification:
self.__identified_gaze_movement = self.__gaze_movement_identifier.current_gaze_movement()
# Update heatmap
if self.__heatmap is not None:
# Scale gaze position value
scale = numpy.array([self.__heatmap.size[0] / self.__size[0], self.__heatmap.size[1] / self.__size[1]])
# Update heatmap image
self.__heatmap.update(self.__calibrated_gaze_position * scale, timestamp=self.__calibrated_gaze_position.timestamp)
# Look layers with valid identified gaze movement
# Note: don't filter valid/invalid finished/unfinished gaze movement to allow layers to reset internally
for layer_name, layer in self._layers.items():
layer.look(self.__identified_gaze_movement)
def not_looked(self):
"""
Tell the frame it is not looked currently
"""
# Use frame lock feature
with self._lock:
# No gaze position
self.__calibrated_gaze_position = GazeFeatures.GazePosition()
# No gaze movement identified
self.__identified_gaze_movement = GazeFeatures.GazeMovement()
@DataFeatures.PipelineStepImage
@DataFeatures.PipelineStepExecutionTime
def image(self, background_weight: float = None, heatmap_weight: float = None, draw_gaze_position_calibrator: dict = None, draw_scan_path: dict = None, draw_layers: dict = None, draw_gaze_positions: dict = None, draw_fixations: dict = None, draw_saccades: dict = None) -> numpy.array:
"""
Get background image with overlaid visualizations.
Parameters:
background_weight: weight of background overlay
heatmap_weight: weight of heatmap overlay
draw_gaze_position_calibrator: [GazeFeatures.GazePositionCalibrator.draw](argaze.md/#argaze.GazeFeatures.GazePositionCalibrator.draw) parameters (if None, nothing is drawn)
draw_scan_path: [GazeFeatures.ScanPath.draw](argaze.md/#argaze.GazeFeatures.ScanPath.draw) parameters (if None, no scan path is drawn)
draw_layers: dictionary of [ArLayer.draw](argaze.md/#argaze.ArFeatures.ArLayer.draw) parameters per layer (if None, no layer is drawn)
draw_gaze_positions: [GazeFeatures.GazePosition.draw](argaze.md/#argaze.GazeFeatures.GazePosition.draw) parameters (if None, no gaze position is drawn)
draw_fixations: [GazeFeatures.Fixation.draw](argaze.md/#argaze.GazeFeatures.Fixation.draw) parameters (if None, no fixation is drawn)
draw_saccades: [GazeFeatures.Saccade.draw](argaze.md/#argaze.GazeFeatures.Saccade.draw) parameters (if None, no saccade is drawn)
"""
logging.debug('ArFrame.image %s', self.name)
# Use frame lock feature
with self._lock:
# Draw background only
if background_weight is not None and (heatmap_weight is None or self.__heatmap is None):
logging.debug('\t> drawing background only')
image = self.__background.copy()
# Draw mix background and heatmap if required
elif background_weight is not None and heatmap_weight is not None and self.__heatmap:
logging.debug('\t> drawing background and heatmap')
background_image = self.__background.copy()
heatmap_image = cv2.resize(self.__heatmap.image(), dsize=self.__size, interpolation=cv2.INTER_LINEAR)
image = cv2.addWeighted(heatmap_image, heatmap_weight, background_image, background_weight, 0)
# Draw heatmap only
elif background_weight is None and heatmap_weight is not None and self.__heatmap:
logging.debug('\t> drawing heatmap only')
image = cv2.resize(self.__heatmap.image, dsize=self.__size, interpolation=cv2.INTER_LINEAR)
# Draw black image
else:
logging.debug('\t> drawing black image')
image = numpy.full((self.__size[1], self.__size[0], 3), 0).astype(numpy.uint8)
# Draw gaze position calibrator
if draw_gaze_position_calibrator is not None:
logging.debug('\t> drawing gaze position calibrator')
self.__gaze_position_calibrator.draw(image, size=self.__size, **draw_gaze_position_calibrator)
# Draw scan path if required
if draw_scan_path is not None and self.__scan_path is not None:
logging.debug('\t> drawing scan path')
self.__scan_path.draw(image, **draw_scan_path)
# Draw current fixation if required
if draw_fixations is not None and self.__gaze_movement_identifier is not None:
if self.__gaze_movement_identifier.current_fixation():
logging.debug('\t> drawing current fixation')
self.__gaze_movement_identifier.current_fixation().draw(image, **draw_fixations)
# Draw current saccade if required
if draw_saccades is not None and self.__gaze_movement_identifier is not None:
if self.__gaze_movement_identifier.current_saccade():
logging.debug('\t> drawing current saccade')
self.__gaze_movement_identifier.current_saccade().draw(image, **draw_saccades)
# Draw layers if required
if draw_layers is not None:
for layer_name, draw_layer in draw_layers.items():
try:
logging.debug('\t> drawing %s layer', layer_name)
self._layers[layer_name].draw(image, **draw_layer)
except KeyError:
raise (DrawingFailed(f'\'{layer_name}\' layer doesn\'t exist.'))
# Draw current gaze position if required
if draw_gaze_positions is not None:
logging.debug('\t> drawing current gaze position')
self.__calibrated_gaze_position.draw(image, **draw_gaze_positions)
logging.debug('\t> returning image (%i x %i)', image.shape[1], image.shape[0])
return DataFeatures.TimestampedImage(image, timestamp=self.__background.timestamp)
class ArScene(DataFeatures.PipelineStepObject):
"""
Define abstract Augmented Reality scene with ArLayers and ArFrames inside.
"""
# noinspection PyMissingConstructor
@DataFeatures.PipelineStepInit
def __init__(self, **kwargs):
"""Initialize ArScene"""
# Init private attributes
self._layers = {}
self.__frames = {}
self.__angle_tolerance = 0.
self.__distance_tolerance = 0.
@property
def layers(self) -> dict:
"""Dictionary of ArLayers to project once the pose is estimated.
See [project][argaze.ArFeatures.ArScene.project] function below."""
return self._layers
@layers.setter
@DataFeatures.PipelineStepAttributeSetter
def layers(self, layers: dict):
self._layers = {}
for layer_name, layer_data in layers.items():
if type(layer_data) is dict:
self._layers[layer_name] = ArLayer(name=layer_name, **layer_data)
# str: relative path to JSON file
elif type(layer_data) is str:
self._layers[layer_name] = DataFeatures.from_json(
os.path.join(DataFeatures.get_working_directory(), layer_data))
# Edit parent
for name, layer in self._layers.items():
layer.parent = self
@property
def frames(self) -> dict:
"""Dictionary of ArFrames to project once the pose is estimated.
See [project][argaze.ArFeatures.ArScene.project] function below."""
return self.__frames
@frames.setter
@DataFeatures.PipelineStepAttributeSetter
def frames(self, frames: dict):
self.__frames = {}
for frame_name, frame_data in frames.items():
if type(frame_data) is dict:
new_frame = ArFrame(name=frame_name, **frame_data)
# str: relative path to JSON file
elif type(frame_data) is str:
new_frame = DataFeatures.from_json(os.path.join(DataFeatures.get_working_directory(), frame_data))
# Loaded frame name have to be equals to dictionary key
assert (new_frame.name == frame_name)
else:
raise ValueError("Bad frame data.")
# Look for a scene layer with an AOI named like the frame
for scene_layer_name, scene_layer in self.layers.items():
try:
frame_3d = scene_layer.aoi_scene[frame_name]
try:
# Check that the frame have a layer named like this scene layer
aoi_2d_scene = new_frame.layers[scene_layer_name].aoi_scene
# Transform 2D frame layer AOI into 3D scene layer AOI
# Then, add them to scene layer
scene_layer.aoi_scene |= aoi_2d_scene.dimensionalize(frame_3d, new_frame.size)
except KeyError as e:
# Warn user about missing layer even if it is possible
logging.warning('ArScene.frames: %s layer doesn\'t exist in %s frame', e, new_frame.name)
except KeyError as e:
# Warn user about missing AOI even if it is possible
logging.warning('ArScene.frames: %s AOI doesn\'t exist in %s layer of %s scene', e, scene_layer_name, self.name)
# Append new frame
self.__frames[frame_name] = new_frame
# Edit parent
for name, frame in self.__frames.items():
frame.parent = self
@property
def angle_tolerance(self) -> float:
"""Angle error tolerance to validate marker pose in degree used into [estimate_pose][argaze.ArFeatures.ArScene.estimate_pose] function."""
return self.__angle_tolerance
@angle_tolerance.setter
def angle_tolerance(self, value: float):
self.__angle_tolerance = value
@property
def distance_tolerance(self) -> float:
"""Distance error tolerance to validate marker pose in centimeter used into [estimate_pose][argaze.ArFeatures.ArScene.estimate_pose] function."""
return self.__distance_tolerance
@distance_tolerance.setter
def distance_tolerance(self, value: float):
self.__distance_tolerance = value
def as_dict(self) -> dict:
"""Export ArScene properties as dictionary."""
return {
**DataFeatures.PipelineStepObject.as_dict(self),
"layers": self._layers,
"frames": self.__frames,
"angle_tolerance": self.__angle_tolerance,
"distance_tolerance": self.__distance_tolerance
}
@DataFeatures.PipelineStepMethod
def estimate_pose(self, detected_features: any) -> tuple[numpy.array, numpy.array, any]:
"""Define abstract estimate scene pose method.
Parameters:
detected_features: any features detected by parent ArCamera that will help in scene pose estimation.
Returns:
tvec: scene translation vector
rvec: scene rotation matrix
extra: any data about pose estimation
"""
raise NotImplementedError('estimate_pose() method not implemented')
@DataFeatures.PipelineStepMethod
def project(self, tvec: numpy.array, rvec: numpy.array, visual_hfov: float = 0., visual_vfov: float = 0.) -> Iterator[Union[str, AOI2DScene.AOI2DScene]]:
"""Project layers according estimated pose and optional field of view clipping angles.
Parameters:
tvec: translation vector
rvec: rotation vector
visual_hfov: horizontal field of view clipping angle
visual_vfov: vertical field of view clipping angle
Returns:
iterator: name of projected layer and AOI2DScene projection
"""
for name, layer in self._layers.items():
# TODO: if greater than 0., use HFOV and VFOV
# to clip AOI out of the visual horizontal field of view
# Copy aoi scene before projection
aoi_scene_copy = layer.aoi_scene.copy()
# Project layer aoi scene
# noinspection PyUnresolvedReferences
yield name, aoi_scene_copy.project(tvec, rvec, self.parent.aruco_detector.optic_parameters.K)
class ArCamera(ArFrame):
"""
Define abstract Augmented Reality camera as ArFrame with ArScenes inside.
"""
@DataFeatures.PipelineStepInit
def __init__(self, **kwargs):
"""Initialize ArCamera."""
# Init ArFrame class
super().__init__()
# Init private attributes
self.__visual_hfov = 0.
self.__visual_vfov = 0.
self.__projection_cache = None
self.__projection_cache_writer = None
self.__projection_cache_reader = None
self.__projection_cache_data = None
self.__copy_background_into_scenes_frames = False
# Init protected attributes
self._scenes = {}
@ArFrame.layers.setter
@DataFeatures.PipelineStepAttributeSetter
def layers(self, layers: dict):
self._layers = {}
for layer_name, layer_data in layers.items():
self._layers[layer_name] = ArLayer(name=layer_name, **layer_data)
# Edit parent
for name, layer in self._layers.items():
layer.parent = self
# Update expected and excluded aoi
self._update_expected_and_excluded_aoi()
@property
def scenes(self) -> dict:
"""All scenes to project into camera frame."""
return self._scenes
@scenes.setter
@DataFeatures.PipelineStepAttributeSetter
def scenes(self, scenes: dict):
self._scenes = {}
for scene_name, scene_data in scenes.items():
self._scenes[scene_name] = ArScene(name=scene_name, **scene_data)
# Edit parent
for name, scene in self._scenes.items():
scene.parent = self
# Update expected and excluded aoi
self._update_expected_and_excluded_aoi()
@property
def visual_hfov(self) -> float:
"""Angle in degree to clip scenes projection according visual horizontal field of view (HFOV)."""
return self.__visual_hfov
@visual_hfov.setter
def visual_hfov(self, value: float):
"""Set camera's visual horizontal field of view."""
self.__visual_hfov = value
@property
def visual_vfov(self) -> float:
"""Angle in degree to clip scenes projection according visual vertical field of view (VFOV)."""
return self.__visual_vfov
@visual_vfov.setter
def visual_vfov(self, value: float):
"""Set camera's visual vertical field of view."""
self.__visual_vfov = value
@property
def projection_cache(self) -> str:
"""file path to store/read layers projections into/from a cache."""
return self.__projection_cache
@projection_cache.setter
def projection_cache(self, projection_cache: str):
self.__projection_cache = projection_cache
# The file doesn't exist yet: store projections into the cache
if not os.path.exists(os.path.join( DataFeatures.get_working_directory(), self.__projection_cache) ):
self.__projection_cache_writer = UtilsFeatures.FileWriter(path=self.__projection_cache)
self.__projection_cache_reader = None
logging.info('ArCamera %s writes projection into %s', self.name, self.__projection_cache)
# The file exist: read projection from the cache
else:
self.__projection_cache_writer = None
self.__projection_cache_reader = UtilsFeatures.FileReader(path=self.__projection_cache)
logging.info('ArCamera %s reads projection from %s', self.name, self.__projection_cache)
def _clear_projection(self):
"""Clear layers projection."""
logging.debug('ArCamera._clear_projection %s', self.name)
for layer_name, layer in self.layers.items():
# Initialize layer if needed
if layer.aoi_scene is None:
layer.aoi_scene = AOI2DScene.AOI2DScene()
else:
layer.aoi_scene.clear()
def _write_projection_cache(self, timestamp: int|float, exception = None):
"""Write layers aoi scene into the projection cache.
Parameters:
timestamp: cache time
"""
if self.__projection_cache_writer is not None:
logging.debug('ArCamera._write_projection_cache %s %f', self.name, timestamp)
if exception is None:
projection = {}
for layer_name, layer in self.layers.items():
projection[layer_name] = layer.aoi_scene
self.__projection_cache_writer.write( (timestamp, projection) )
else:
self.__projection_cache_writer.write( (timestamp, exception) )
def _read_projection_cache(self, timestamp: int|float):
"""Read layers aoi scene from the projection cache.
Parameters:
timestamp: cache time.
Returns:
success: False if there is no projection cache, True otherwise.
"""
if self.__projection_cache_reader is None:
return False
logging.debug('ArCamera._read_projection_cache %s %f', self.name, timestamp)
# Clear former projection
self._clear_projection()
try:
# Read first data if not done yet
if self.__projection_cache_data is None:
self.__projection_cache_data = self.__projection_cache_reader.read()
# Continue reading cache until correct timestamped projection
while float(self.__projection_cache_data[0]) < timestamp:
self.__projection_cache_data = self.__projection_cache_reader.read()
# No more projection in the cache
except EOFError:
raise DataFeatures.TimestampedException("Projection cache is empty", timestamp=timestamp)
# Correct timestamped projection is found
if float(self.__projection_cache_data[0]) == timestamp:
# When correct timestamped projection is found
projection = {}
try:
projection = ast.literal_eval(self.__projection_cache_data[1])
for layer_name, aoi_scene in projection.items():
self._layers[layer_name].aoi_scene = AOI2DScene.AOI2DScene(aoi_scene)
self._layers[layer_name].timestamp = timestamp
logging.debug('> reading %s projection from cache', layer_name)
except SyntaxError as e:
raise DataFeatures.TimestampedException(self.__projection_cache_data[1], timestamp=timestamp)
return True
@property
def copy_background_into_scenes_frames(self) -> bool:
"""Enable/disable camera frame background copy into scene frames background."""
return self.__copy_background_into_scenes_frames
@copy_background_into_scenes_frames.setter
@DataFeatures.PipelineStepAttributeSetter
def copy_background_into_scenes_frames(self, project: bool) -> bool:
self.__copy_background_into_scenes_frames = project
def _copy_background_into_scenes_frames(self):
"""Copy camera frame background into scene frames background.
!!! warning
This method have to be called once AOI have been projected into camera frame layers.
!!! note
This method makes each frame to send an 'on_copy_background_into_scenes_frames' signal to their observers.
"""
# Project camera frame background into each scene frame if possible
for frame in self.scene_frames():
# Clear frame background
frame.background = DataFeatures.TimestampedImage(numpy.full((frame.size[1], frame.size[0], 3), 0).astype(numpy.uint8), timestamp=self.background.timestamp)
# Is there an AOI inside camera frame layers projection which its name equals to a scene frame name?
for camera_layer_name, camera_layer in self.layers.items():
try:
aoi_2d = camera_layer.aoi_scene[frame.name]
# Apply perspective transform algorithm to fill aoi frame background
width, height = frame.size
destination = numpy.float32([[0, 0], [width, 0], [width, height], [0, height]])
mapping = cv2.getPerspectiveTransform(aoi_2d.astype(numpy.float32), destination)
frame.background = DataFeatures.TimestampedImage(cv2.warpPerspective(self.background, mapping, (width, height)), timestamp=self.background.timestamp)
# Ignore missing frame projection
except KeyError:
pass
# Notify frame's 'on_copy_background_into_scenes_frames' signal observers
frame.send_signal('copy_background_into_scenes_frames', timestamp=self.background.timestamp)
def scene_frames(self) -> Iterator[ArFrame]:
"""Iterate over all scenes frames"""
# For each scene
for scene_name, scene in self._scenes.items():
# For each scene frame
for name, scene_frame in scene.frames.items():
yield scene_frame
def as_dict(self) -> dict:
"""Export ArCamera properties as dictionary."""
return {
**ArFrame.as_dict(self),
"scenes": self._scenes,
"visual_hfov": self.__visual_hfov,
"visual_vfov": self.__visual_vfov
}
@DataFeatures.PipelineStepEnter
def __enter__(self):
if self.__projection_cache_writer is not None:
self.__projection_cache_writer.__enter__()
if self.__projection_cache_reader is not None:
self.__projection_cache_reader.__enter__()
@DataFeatures.PipelineStepExit
def __exit__(self, exception_type, exception_value, exception_traceback):
if self.__projection_cache_writer is not None:
self.__projection_cache_writer.__exit__(exception_type, exception_value, exception_traceback)
if self.__projection_cache_reader is not None:
self.__projection_cache_reader.__exit__(exception_type, exception_value, exception_traceback)
def _update_expected_and_excluded_aoi(self):
"""Edit expected aoi of each layer aoi scan path with the aoi of corresponding scene layer.
Edit excluded aoi to ignore frame aoi from aoi matching.
"""
if not self._layers or not self._scenes:
logging.debug('ArCamera._update_expected_and_excluded_aoi %s: missing layers or scenes', self.name)
return
logging.debug('ArCamera._update_expected_and_excluded_aoi %s', self.name)
for layer_name, layer in self._layers.items():
expected_aoi_list = []
excluded_aoi_list = []
for scene_name, scene in self._scenes.items():
# Append scene layer aoi to corresponding expected camera layer aoi
try:
scene_layer = scene.layers[layer_name]
expected_aoi_list.extend(list(scene_layer.aoi_scene.keys()))
except KeyError:
continue
# Remove scene frame from expected camera layer aoi
# Exclude scene frame from camera layer aoi matching
for frame_name, frame in scene.frames.items():
try:
expected_aoi_list.remove(frame_name)
excluded_aoi_list.append(frame_name)
except ValueError:
continue
if layer.aoi_scan_path is not None:
layer.aoi_scan_path.expected_aoi = expected_aoi_list
if layer.aoi_matcher is not None:
layer.aoi_matcher.exclude = excluded_aoi_list
@DataFeatures.PipelineStepMethod
def watch(self, image: numpy.array):
"""Detect AR features from image and project scenes into camera frame.
Parameters:
image: image where to extract AR features
"""
raise NotImplementedError('watch() method not implemented')
@DataFeatures.PipelineStepMethod
@DataFeatures.PipelineStepExecutionTime
def look(self, timestamped_gaze_position: GazeFeatures.GazePosition):
"""Project timestamped gaze position into each scene frames.
!!! warning
watch method needs to be called first.
Parameters:
timestamped_gaze_position: gaze position to project
"""
# Project timestamped gaze position into camera frame
# NOTE: the call to super().look method uses unwrap option to disable observers notification
# as they are already notified that this look method is called. Cf DataFeatures.PipelineStepMethod.wrapper.
super().look(timestamped_gaze_position, unwrap=True)
# Use camera frame lock feature
with self._lock:
# Project gaze position into each scene frames if possible
for scene_frame in self.scene_frames():
# Is there an AOI inside camera frame layers projection which its name equals to a scene frame name?
for camera_layer_name, camera_layer in self.layers.items():
if camera_layer.aoi_scene:
try:
aoi_2d = camera_layer.aoi_scene[scene_frame.name]
if timestamped_gaze_position:
# TODO?: Should we prefer to use camera frame AOIMatcher object?
if aoi_2d.contains_point(timestamped_gaze_position):
inner_x, inner_y = aoi_2d.clockwise().inner_axis(*timestamped_gaze_position)
# QUESTION: How to project gaze precision?
inner_gaze_position = GazeFeatures.GazePosition((inner_x, inner_y), timestamp=timestamped_gaze_position.timestamp)
# Project inner gaze position into scene frame
scene_frame.look(inner_gaze_position * scene_frame.size)
else:
# Tell the frame it is not looked currently
scene_frame.not_looked()
# Ignore missing aoi in camera frame layer projection
except KeyError:
pass
# Define default ArContext image parameters
DEFAULT_ARCONTEXT_IMAGE_PARAMETERS = {
"draw_pipeline": True,
"draw_times": True,
"draw_exceptions": True
}
class ArContext(DataFeatures.PipelineStepObject):
"""
Defines abstract Python context manager to handle pipeline inputs.
"""
# noinspection PyMissingConstructor
@DataFeatures.PipelineStepInit
def __init__(self, **kwargs):
# Init private attributes
self.__pipeline = None
self.__exceptions = DataFeatures.TimestampedExceptions()
# Init protected attributes
self._stop_event = threading.Event()
self._pause_event = threading.Event()
self._image_parameters = DEFAULT_ARCONTEXT_IMAGE_PARAMETERS
@property
def pipeline(self) -> DataFeatures.PipelineStepObject:
"""ArFrame used to process gaze data or ArCamera used to process gaze data and video of environment."""
return self.__pipeline
@pipeline.setter
@DataFeatures.PipelineStepAttributeSetter
def pipeline(self, pipeline: DataFeatures.PipelineStepObject):
assert (issubclass(type(pipeline), DataFeatures.PipelineStepObject))
self.__pipeline = pipeline
def exceptions(self) -> DataFeatures.TimestampedExceptions:
"""Get exceptions list"""
return self.__exceptions
def as_dict(self) -> dict:
"""Export ArContext properties as dictionary."""
return {
**DataFeatures.PipelineStepObject.as_dict(self),
"pipeline": self.__pipeline,
"image_parameters": self._image_parameters
}
@DataFeatures.PipelineStepEnter
def __enter__(self):
"""Enter into ArContext."""
return self
@DataFeatures.PipelineStepExit
def __exit__(self, exception_type, exception_value, exception_traceback):
"""Exit from ArContext."""
pass
def _process_gaze_position(self, timestamp: int | float, x: int | float = None, y: int | float = None, precision: int | float = None):
"""Request pipeline to process new gaze position at a timestamp."""
logging.debug('ArContext._process_gaze_position %s', self.name)
if issubclass(type(self.__pipeline), ArFrame):
try:
if x is None and y is None:
# Edit empty gaze position
self.__pipeline.look(GazeFeatures.GazePosition(timestamp=timestamp))
else:
# Edit gaze position
self.__pipeline.look(GazeFeatures.GazePosition((x, y), precision=precision, timestamp=timestamp))
except DataFeatures.TimestampedException as e:
logging.warning('%s._process_gaze_position: %s', DataFeatures.get_class_path(self), e)
self.__exceptions.append(e)
else:
raise (TypeError('Pipeline is not ArFrame instance.'))
def _process_camera_image(self, timestamp: int | float, image: numpy.array):
"""Request pipeline to process new camera image at a timestamp."""
logging.debug('ArContext._process_camera_image %s', self.name)
if issubclass(type(self.__pipeline), ArCamera):
height, width, _ = image.shape
# Compare image size with ArCamera frame size
if list(image.shape[0:2][::-1]) != self.__pipeline.size:
logging.warning('%s._process_camera_image: image size (%i x %i) is different of ArCamera frame size (%i x %i)', DataFeatures.get_class_path(self), width, height, self.__pipeline.size[0], self.__pipeline.size[1])
return
try:
logging.debug('\t> watch image (%i x %i)', width, height)
self.__pipeline.watch(DataFeatures.TimestampedImage(image, timestamp=timestamp))
except DataFeatures.TimestampedException as e:
logging.warning('%s._process_camera_image: %s', DataFeatures.get_class_path(self), e)
self.__exceptions.append(e)
else:
raise (TypeError('Pipeline is not ArCamera instance.'))
@DataFeatures.PipelineStepImage
def image(self, draw_pipeline: bool = True, draw_times: bool = True, draw_exceptions: bool = True):
"""
Get pipeline image with execution information.
Parameters:
draw_pipeline: draw pipeline image if True else only pipeline background
draw_times: draw pipeline execution times
draw_exceptions: draw pipeline exception messages
"""
logging.debug('ArContext.image %s', self.name)
if draw_pipeline:
image = self.__pipeline.image()
height, width, _ = image.shape
logging.debug('\t> get image (%i x %i)', width, height)
else:
image = self.__pipeline.background
height, width, _ = image.shape
logging.debug('\t> get background (%i x %i)', width, height)
last_position = self.__pipeline.last_gaze_position()
info_stack = 0
if draw_times:
# Draw frame timestamp
if image.is_timestamped():
info_stack += 1
cv2.putText(image, f'Frame at {image.timestamp}ms', (20, info_stack * 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 1, cv2.LINE_AA)
# Draw watch time if relevant
if issubclass(type(self.__pipeline), ArCamera):
time, frequency = self.__pipeline.execution_info('watch')
info_stack += 1
cv2.putText(image, f'Watch {time*1e3:.0f}ms at {frequency:.0f}Hz', (20, info_stack * 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 1, cv2.LINE_AA)
# Draw gaze position timestamp
if last_position is not None:
info_stack += 1
cv2.putText(image, f'Position at {last_position.timestamp:.3f}ms', (20, info_stack * 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 1, cv2.LINE_AA)
# Draw look time if relevant
if issubclass(type(self.__pipeline), ArFrame):
time, frequency = self.__pipeline.execution_info('look')
info_stack += 1
cv2.putText(image, f'Look {time*1e3:.2f}ms at {frequency:.0f}Hz', (20, info_stack * 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 1, cv2.LINE_AA)
# Draw visualization time
time, frequency = time, frequency = self.__pipeline.execution_info('image')
info_stack += 1
cv2.putText(image, f'Visualization {time*1e3:.0f}ms at {frequency:.0f}Hz', (20, info_stack * 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 1, cv2.LINE_AA)
if draw_exceptions:
# Write exceptions
while self.__exceptions:
e = self.__exceptions.pop()
i = len(self.__exceptions)
cv2.rectangle(image, (0, height - (i + 1) * 50), (width, height - i * 50), (0, 0, 127), -1)
cv2.putText(image, f'error: {e}', (20, height - (i + 1) * 50 + 25), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 1, cv2.LINE_AA)
return image
def is_running(self) -> bool:
"""Is context running?"""
return not self._stop_event.is_set()
@DataFeatures.PipelineStepMethod
def stop(self):
"""Stop context."""
self._stop_event.set()
@DataFeatures.PipelineStepMethod
def pause(self):
"""Pause pipeline processing."""
self._pause_event.set()
def is_paused(self) -> bool:
"""Is pipeline processing paused?"""
return self._pause_event.is_set()
@DataFeatures.PipelineStepMethod
def resume(self):
"""Resume pipeline processing."""
self._pause_event.clear()
class LiveProcessingContext(ArContext):
"""
Defines abstract live data processing context.
"""
@DataFeatures.PipelineStepInit
def __init__(self, **kwargs):
super().__init__()
def calibrate(self):
"""Launch device calibration process."""
raise NotImplementedError
# Define default PostProcessingContext image parameters
DEFAULT_POST_PROCESSING_CONTEXT_IMAGE_PARAMETERS = {
"draw_progression": True
}
class PostProcessingContext(ArContext):
"""
Defines abstract post data processing context.
"""
@DataFeatures.PipelineStepInit
def __init__(self, **kwargs):
super().__init__()
self._image_parameters = {**DEFAULT_ARCONTEXT_IMAGE_PARAMETERS, **DEFAULT_POST_PROCESSING_CONTEXT_IMAGE_PARAMETERS}
@property
def duration(self) -> int|float:
"""Get data duration."""
raise NotImplementedError
@property
def progression(self) -> float:
"""Get data processing progression between 0 and 1."""
raise NotImplementedError
@DataFeatures.PipelineStepImage
def image(self, draw_progression: bool = True, **kwargs):
"""
Get pipeline image with post processing information.
Parameters:
draw_progression: draw progress bar
"""
logging.debug('PostProcessingContext.image %s', self.name)
image = super().image(**kwargs)
height, width, _ = image.shape
if draw_progression:
p = int(self.progression * width)
cv2.rectangle(image, (0, 0), (p, 2), (255, 255, 255), -1)
return image
|