aboutsummaryrefslogtreecommitdiff
path: root/src/argaze/GazeAnalysis/KCoefficient.py
blob: 886663cc1e16f1bb58e167659fd946b4288d96a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""K coefficient and K-modified coefficient module.
"""

__author__ = "Théo de la Hogue"
__credits__ = []
__copyright__ = "Copyright 2023, Ecole Nationale de l'Aviation Civile (ENAC)"
__license__ = "BSD"

from dataclasses import dataclass

from argaze import GazeFeatures, DataFeatures

import numpy

@dataclass
class ScanPathAnalyzer(GazeFeatures.ScanPathAnalyzer):
    """Implementation of the K coefficient algorithm as described in:

        **Krejtz K., Duchowski A., Krejtz I., Szarkowska A., & Kopacz A. (2016).**  
        *Discerning ambient/focal attention with coefficient K.*  
        ACM Transactions on Applied Perception (TAP, 1–20).  
        [https://doi.org/10.1145/2896452](https://doi.org/10.1145/2896452)
    """

    def __post_init__(self):

        super().__init__()

        self.__K = 0

    @DataFeatures.PipelineStepMethod
    def analyze(self, scan_path: GazeFeatures.ScanPathType):

        assert(len(scan_path) > 1)

        durations = []
        amplitudes = []

        for scan_step in scan_path:

            durations.append(scan_step.duration)
            amplitudes.append(scan_step.last_saccade.amplitude)

        durations = numpy.array(durations)
        amplitudes = numpy.array(amplitudes)

        duration_mean = numpy.mean(durations)
        amplitude_mean = numpy.mean(amplitudes)

        duration_std = numpy.std(durations)
        amplitude_std = numpy.std(amplitudes)

        if duration_std > 0. and amplitude_std > 0.:

            Ks = []
            for scan_step in scan_path:

                Ks.append((abs(scan_step.duration - duration_mean) / duration_std) - (abs(scan_step.last_saccade.amplitude - amplitude_mean) / amplitude_std))

            self.__K = numpy.array(Ks).mean()

        else:

            self.__K = 0.

    @property
    def K(self) -> float:
        """K coefficient."""

        return self.__K

@dataclass
class AOIScanPathAnalyzer(GazeFeatures.AOIScanPathAnalyzer):
    """Implementation of the K-modified coefficient algorithm as described in:

        **Lounis, C. A., Hassoumi, A., Lefrancois, O., Peysakhovich, V., & Causse, M. (2020, June).**  
        *Detecting ambient/focal visual attention in professional airline pilots with a modified Coefficient K: a full flight simulator study.*  
        ACM Symposium on Eye Tracking Research and Applications (ETRA'20, 1-6).  
        [https://doi.org/10.1145/3379157.3391412](https://doi.org/10.1145/3379157.3391412)
    """

    def __post_init__(self):

        super().__init__()

        self.__K = 0

    @DataFeatures.PipelineStepMethod
    def analyze(self, aoi_scan_path: GazeFeatures.AOIScanPathType) -> float:

        assert(len(aoi_scan_path) > 1)

        durations = []
        amplitudes = []

        for aoi_scan_step in aoi_scan_path:

            durations.append(aoi_scan_step.duration)
            amplitudes.append(aoi_scan_step.last_saccade.amplitude)

        durations = numpy.array(durations)
        amplitudes = numpy.array(amplitudes)

        duration_mean = numpy.mean(durations)
        amplitude_mean = numpy.mean(amplitudes)

        duration_std = numpy.std(durations)
        amplitude_std = numpy.std(amplitudes)

        if duration_std > 0. and amplitude_std > 0.:

            Ks = []
            for aoi_scan_step in aoi_scan_path:

                Ks.append((abs(aoi_scan_step.duration - duration_mean) / duration_std) - (abs(aoi_scan_step.last_saccade.amplitude - amplitude_mean) / amplitude_std))

            self.__K = numpy.array(Ks).mean()

        else:

            self.__K = 0.

    @property
    def K(self) -> float:
        """K coefficient."""

        return self.__K