aboutsummaryrefslogtreecommitdiff
path: root/Perl/t/Test/More.pm
diff options
context:
space:
mode:
authormertz2003-09-22 10:11:39 +0000
committermertz2003-09-22 10:11:39 +0000
commitcc7a7619c1d992b56bedb906773909696126cdc9 (patch)
tree90541c8eab48ed7a825c6c2de022a283aa222c96 /Perl/t/Test/More.pm
parent65f23eea6a663058c714d03b417b68b5b16b1fee (diff)
downloadtkzinc-cc7a7619c1d992b56bedb906773909696126cdc9.zip
tkzinc-cc7a7619c1d992b56bedb906773909696126cdc9.tar.gz
tkzinc-cc7a7619c1d992b56bedb906773909696126cdc9.tar.bz2
tkzinc-cc7a7619c1d992b56bedb906773909696126cdc9.tar.xz
these files are used for building complexe test files
Diffstat (limited to 'Perl/t/Test/More.pm')
-rw-r--r--Perl/t/Test/More.pm1248
1 files changed, 1248 insertions, 0 deletions
diff --git a/Perl/t/Test/More.pm b/Perl/t/Test/More.pm
new file mode 100644
index 0000000..03f7552
--- /dev/null
+++ b/Perl/t/Test/More.pm
@@ -0,0 +1,1248 @@
+package Test::More;
+
+use 5.004;
+
+use strict;
+use Test::Builder;
+
+
+# Can't use Carp because it might cause use_ok() to accidentally succeed
+# even though the module being used forgot to use Carp. Yes, this
+# actually happened.
+sub _carp {
+ my($file, $line) = (caller(1))[1,2];
+ warn @_, " at $file line $line\n";
+}
+
+
+
+require Exporter;
+use vars qw($VERSION @ISA @EXPORT %EXPORT_TAGS $TODO);
+$VERSION = '0.47';
+@ISA = qw(Exporter);
+@EXPORT = qw(ok use_ok require_ok
+ is isnt like unlike is_deeply
+ cmp_ok
+ skip todo todo_skip
+ pass fail
+ eq_array eq_hash eq_set
+ $TODO
+ plan
+ can_ok isa_ok
+ diag
+ );
+
+my $Test = Test::Builder->new;
+
+
+# 5.004's Exporter doesn't have export_to_level.
+sub _export_to_level
+{
+ my $pkg = shift;
+ my $level = shift;
+ (undef) = shift; # redundant arg
+ my $callpkg = caller($level);
+ $pkg->export($callpkg, @_);
+}
+
+
+=head1 NAME
+
+Test::More - yet another framework for writing test scripts
+
+=head1 SYNOPSIS
+
+ use Test::More tests => $Num_Tests;
+ # or
+ use Test::More qw(no_plan);
+ # or
+ use Test::More skip_all => $reason;
+
+ BEGIN { use_ok( 'Some::Module' ); }
+ require_ok( 'Some::Module' );
+
+ # Various ways to say "ok"
+ ok($this eq $that, $test_name);
+
+ is ($this, $that, $test_name);
+ isnt($this, $that, $test_name);
+
+ # Rather than print STDERR "# here's what went wrong\n"
+ diag("here's what went wrong");
+
+ like ($this, qr/that/, $test_name);
+ unlike($this, qr/that/, $test_name);
+
+ cmp_ok($this, '==', $that, $test_name);
+
+ is_deeply($complex_structure1, $complex_structure2, $test_name);
+
+ SKIP: {
+ skip $why, $how_many unless $have_some_feature;
+
+ ok( foo(), $test_name );
+ is( foo(42), 23, $test_name );
+ };
+
+ TODO: {
+ local $TODO = $why;
+
+ ok( foo(), $test_name );
+ is( foo(42), 23, $test_name );
+ };
+
+ can_ok($module, @methods);
+ isa_ok($object, $class);
+
+ pass($test_name);
+ fail($test_name);
+
+ # Utility comparison functions.
+ eq_array(\@this, \@that);
+ eq_hash(\%this, \%that);
+ eq_set(\@this, \@that);
+
+ # UNIMPLEMENTED!!!
+ my @status = Test::More::status;
+
+ # UNIMPLEMENTED!!!
+ BAIL_OUT($why);
+
+
+=head1 DESCRIPTION
+
+B<STOP!> If you're just getting started writing tests, have a look at
+Test::Simple first. This is a drop in replacement for Test::Simple
+which you can switch to once you get the hang of basic testing.
+
+The purpose of this module is to provide a wide range of testing
+utilities. Various ways to say "ok" with better diagnostics,
+facilities to skip tests, test future features and compare complicated
+data structures. While you can do almost anything with a simple
+C<ok()> function, it doesn't provide good diagnostic output.
+
+
+=head2 I love it when a plan comes together
+
+Before anything else, you need a testing plan. This basically declares
+how many tests your script is going to run to protect against premature
+failure.
+
+The preferred way to do this is to declare a plan when you C<use Test::More>.
+
+ use Test::More tests => $Num_Tests;
+
+There are rare cases when you will not know beforehand how many tests
+your script is going to run. In this case, you can declare that you
+have no plan. (Try to avoid using this as it weakens your test.)
+
+ use Test::More qw(no_plan);
+
+In some cases, you'll want to completely skip an entire testing script.
+
+ use Test::More skip_all => $skip_reason;
+
+Your script will declare a skip with the reason why you skipped and
+exit immediately with a zero (success). See L<Test::Harness> for
+details.
+
+If you want to control what functions Test::More will export, you
+have to use the 'import' option. For example, to import everything
+but 'fail', you'd do:
+
+ use Test::More tests => 23, import => ['!fail'];
+
+Alternatively, you can use the plan() function. Useful for when you
+have to calculate the number of tests.
+
+ use Test::More;
+ plan tests => keys %Stuff * 3;
+
+or for deciding between running the tests at all:
+
+ use Test::More;
+ if( $^O eq 'MacOS' ) {
+ plan skip_all => 'Test irrelevant on MacOS';
+ }
+ else {
+ plan tests => 42;
+ }
+
+=cut
+
+sub plan {
+ my(@plan) = @_;
+
+ my $caller = caller;
+
+ $Test->exported_to($caller);
+
+ my @imports = ();
+ foreach my $idx (0..$#plan) {
+ if( $plan[$idx] eq 'import' ) {
+ my($tag, $imports) = splice @plan, $idx, 2;
+ @imports = @$imports;
+ last;
+ }
+ }
+
+ $Test->plan(@plan);
+
+ __PACKAGE__->_export_to_level(1, __PACKAGE__, @imports);
+}
+
+sub import {
+ my($class) = shift;
+ goto &plan;
+}
+
+
+=head2 Test names
+
+By convention, each test is assigned a number in order. This is
+largely done automatically for you. However, it's often very useful to
+assign a name to each test. Which would you rather see:
+
+ ok 4
+ not ok 5
+ ok 6
+
+or
+
+ ok 4 - basic multi-variable
+ not ok 5 - simple exponential
+ ok 6 - force == mass * acceleration
+
+The later gives you some idea of what failed. It also makes it easier
+to find the test in your script, simply search for "simple
+exponential".
+
+All test functions take a name argument. It's optional, but highly
+suggested that you use it.
+
+
+=head2 I'm ok, you're not ok.
+
+The basic purpose of this module is to print out either "ok #" or "not
+ok #" depending on if a given test succeeded or failed. Everything
+else is just gravy.
+
+All of the following print "ok" or "not ok" depending on if the test
+succeeded or failed. They all also return true or false,
+respectively.
+
+=over 4
+
+=item B<ok>
+
+ ok($this eq $that, $test_name);
+
+This simply evaluates any expression (C<$this eq $that> is just a
+simple example) and uses that to determine if the test succeeded or
+failed. A true expression passes, a false one fails. Very simple.
+
+For example:
+
+ ok( $exp{9} == 81, 'simple exponential' );
+ ok( Film->can('db_Main'), 'set_db()' );
+ ok( $p->tests == 4, 'saw tests' );
+ ok( !grep !defined $_, @items, 'items populated' );
+
+(Mnemonic: "This is ok.")
+
+$test_name is a very short description of the test that will be printed
+out. It makes it very easy to find a test in your script when it fails
+and gives others an idea of your intentions. $test_name is optional,
+but we B<very> strongly encourage its use.
+
+Should an ok() fail, it will produce some diagnostics:
+
+ not ok 18 - sufficient mucus
+ # Failed test 18 (foo.t at line 42)
+
+This is actually Test::Simple's ok() routine.
+
+=cut
+
+sub ok ($;$) {
+ my($test, $name) = @_;
+ $Test->ok($test, $name);
+}
+
+=item B<is>
+
+=item B<isnt>
+
+ is ( $this, $that, $test_name );
+ isnt( $this, $that, $test_name );
+
+Similar to ok(), is() and isnt() compare their two arguments
+with C<eq> and C<ne> respectively and use the result of that to
+determine if the test succeeded or failed. So these:
+
+ # Is the ultimate answer 42?
+ is( ultimate_answer(), 42, "Meaning of Life" );
+
+ # $foo isn't empty
+ isnt( $foo, '', "Got some foo" );
+
+are similar to these:
+
+ ok( ultimate_answer() eq 42, "Meaning of Life" );
+ ok( $foo ne '', "Got some foo" );
+
+(Mnemonic: "This is that." "This isn't that.")
+
+So why use these? They produce better diagnostics on failure. ok()
+cannot know what you are testing for (beyond the name), but is() and
+isnt() know what the test was and why it failed. For example this
+test:
+
+ my $foo = 'waffle'; my $bar = 'yarblokos';
+ is( $foo, $bar, 'Is foo the same as bar?' );
+
+Will produce something like this:
+
+ not ok 17 - Is foo the same as bar?
+ # Failed test (foo.t at line 139)
+ # got: 'waffle'
+ # expected: 'yarblokos'
+
+So you can figure out what went wrong without rerunning the test.
+
+You are encouraged to use is() and isnt() over ok() where possible,
+however do not be tempted to use them to find out if something is
+true or false!
+
+ # XXX BAD! $pope->isa('Catholic') eq 1
+ is( $pope->isa('Catholic'), 1, 'Is the Pope Catholic?' );
+
+This does not check if C<$pope->isa('Catholic')> is true, it checks if
+it returns 1. Very different. Similar caveats exist for false and 0.
+In these cases, use ok().
+
+ ok( $pope->isa('Catholic') ), 'Is the Pope Catholic?' );
+
+For those grammatical pedants out there, there's an C<isn't()>
+function which is an alias of isnt().
+
+=cut
+
+sub is ($$;$) {
+ $Test->is_eq(@_);
+}
+
+sub isnt ($$;$) {
+ $Test->isnt_eq(@_);
+}
+
+*isn't = \&isnt;
+
+
+=item B<like>
+
+ like( $this, qr/that/, $test_name );
+
+Similar to ok(), like() matches $this against the regex C<qr/that/>.
+
+So this:
+
+ like($this, qr/that/, 'this is like that');
+
+is similar to:
+
+ ok( $this =~ /that/, 'this is like that');
+
+(Mnemonic "This is like that".)
+
+The second argument is a regular expression. It may be given as a
+regex reference (i.e. C<qr//>) or (for better compatibility with older
+perls) as a string that looks like a regex (alternative delimiters are
+currently not supported):
+
+ like( $this, '/that/', 'this is like that' );
+
+Regex options may be placed on the end (C<'/that/i'>).
+
+Its advantages over ok() are similar to that of is() and isnt(). Better
+diagnostics on failure.
+
+=cut
+
+sub like ($$;$) {
+ $Test->like(@_);
+}
+
+
+=item B<unlike>
+
+ unlike( $this, qr/that/, $test_name );
+
+Works exactly as like(), only it checks if $this B<does not> match the
+given pattern.
+
+=cut
+
+sub unlike {
+ $Test->unlike(@_);
+}
+
+
+=item B<cmp_ok>
+
+ cmp_ok( $this, $op, $that, $test_name );
+
+Halfway between ok() and is() lies cmp_ok(). This allows you to
+compare two arguments using any binary perl operator.
+
+ # ok( $this eq $that );
+ cmp_ok( $this, 'eq', $that, 'this eq that' );
+
+ # ok( $this == $that );
+ cmp_ok( $this, '==', $that, 'this == that' );
+
+ # ok( $this && $that );
+ cmp_ok( $this, '&&', $that, 'this || that' );
+ ...etc...
+
+Its advantage over ok() is when the test fails you'll know what $this
+and $that were:
+
+ not ok 1
+ # Failed test (foo.t at line 12)
+ # '23'
+ # &&
+ # undef
+
+It's also useful in those cases where you are comparing numbers and
+is()'s use of C<eq> will interfere:
+
+ cmp_ok( $big_hairy_number, '==', $another_big_hairy_number );
+
+=cut
+
+sub cmp_ok($$$;$) {
+ $Test->cmp_ok(@_);
+}
+
+
+=item B<can_ok>
+
+ can_ok($module, @methods);
+ can_ok($object, @methods);
+
+Checks to make sure the $module or $object can do these @methods
+(works with functions, too).
+
+ can_ok('Foo', qw(this that whatever));
+
+is almost exactly like saying:
+
+ ok( Foo->can('this') &&
+ Foo->can('that') &&
+ Foo->can('whatever')
+ );
+
+only without all the typing and with a better interface. Handy for
+quickly testing an interface.
+
+No matter how many @methods you check, a single can_ok() call counts
+as one test. If you desire otherwise, use:
+
+ foreach my $meth (@methods) {
+ can_ok('Foo', $meth);
+ }
+
+=cut
+
+sub can_ok ($@) {
+ my($proto, @methods) = @_;
+ my $class = ref $proto || $proto;
+
+ unless( @methods ) {
+ my $ok = $Test->ok( 0, "$class->can(...)" );
+ $Test->diag(' can_ok() called with no methods');
+ return $ok;
+ }
+
+ my @nok = ();
+ foreach my $method (@methods) {
+ local($!, $@); # don't interfere with caller's $@
+ # eval sometimes resets $!
+ eval { $proto->can($method) } || push @nok, $method;
+ }
+
+ my $name;
+ $name = @methods == 1 ? "$class->can('$methods[0]')"
+ : "$class->can(...)";
+
+ my $ok = $Test->ok( !@nok, $name );
+
+ $Test->diag(map " $class->can('$_') failed\n", @nok);
+
+ return $ok;
+}
+
+=item B<isa_ok>
+
+ isa_ok($object, $class, $object_name);
+ isa_ok($ref, $type, $ref_name);
+
+Checks to see if the given $object->isa($class). Also checks to make
+sure the object was defined in the first place. Handy for this sort
+of thing:
+
+ my $obj = Some::Module->new;
+ isa_ok( $obj, 'Some::Module' );
+
+where you'd otherwise have to write
+
+ my $obj = Some::Module->new;
+ ok( defined $obj && $obj->isa('Some::Module') );
+
+to safeguard against your test script blowing up.
+
+It works on references, too:
+
+ isa_ok( $array_ref, 'ARRAY' );
+
+The diagnostics of this test normally just refer to 'the object'. If
+you'd like them to be more specific, you can supply an $object_name
+(for example 'Test customer').
+
+=cut
+
+sub isa_ok ($$;$) {
+ my($object, $class, $obj_name) = @_;
+
+ my $diag;
+ $obj_name = 'The object' unless defined $obj_name;
+ my $name = "$obj_name isa $class";
+ if( !defined $object ) {
+ $diag = "$obj_name isn't defined";
+ }
+ elsif( !ref $object ) {
+ $diag = "$obj_name isn't a reference";
+ }
+ else {
+ # We can't use UNIVERSAL::isa because we want to honor isa() overrides
+ local($@, $!); # eval sometimes resets $!
+ my $rslt = eval { $object->isa($class) };
+ if( $@ ) {
+ if( $@ =~ /^Can't call method "isa" on unblessed reference/ ) {
+ if( !UNIVERSAL::isa($object, $class) ) {
+ my $ref = ref $object;
+ $diag = "$obj_name isn't a '$class' it's a '$ref'";
+ }
+ } else {
+ die <<WHOA;
+WHOA! I tried to call ->isa on your object and got some weird error.
+This should never happen. Please contact the author immediately.
+Here's the error.
+$@
+WHOA
+ }
+ }
+ elsif( !$rslt ) {
+ my $ref = ref $object;
+ $diag = "$obj_name isn't a '$class' it's a '$ref'";
+ }
+ }
+
+
+
+ my $ok;
+ if( $diag ) {
+ $ok = $Test->ok( 0, $name );
+ $Test->diag(" $diag\n");
+ }
+ else {
+ $ok = $Test->ok( 1, $name );
+ }
+
+ return $ok;
+}
+
+
+=item B<pass>
+
+=item B<fail>
+
+ pass($test_name);
+ fail($test_name);
+
+Sometimes you just want to say that the tests have passed. Usually
+the case is you've got some complicated condition that is difficult to
+wedge into an ok(). In this case, you can simply use pass() (to
+declare the test ok) or fail (for not ok). They are synonyms for
+ok(1) and ok(0).
+
+Use these very, very, very sparingly.
+
+=cut
+
+sub pass (;$) {
+ $Test->ok(1, @_);
+}
+
+sub fail (;$) {
+ $Test->ok(0, @_);
+}
+
+=back
+
+=head2 Diagnostics
+
+If you pick the right test function, you'll usually get a good idea of
+what went wrong when it failed. But sometimes it doesn't work out
+that way. So here we have ways for you to write your own diagnostic
+messages which are safer than just C<print STDERR>.
+
+=over 4
+
+=item B<diag>
+
+ diag(@diagnostic_message);
+
+Prints a diagnostic message which is guaranteed not to interfere with
+test output. Handy for this sort of thing:
+
+ ok( grep(/foo/, @users), "There's a foo user" ) or
+ diag("Since there's no foo, check that /etc/bar is set up right");
+
+which would produce:
+
+ not ok 42 - There's a foo user
+ # Failed test (foo.t at line 52)
+ # Since there's no foo, check that /etc/bar is set up right.
+
+You might remember C<ok() or diag()> with the mnemonic C<open() or
+die()>.
+
+B<NOTE> The exact formatting of the diagnostic output is still
+changing, but it is guaranteed that whatever you throw at it it won't
+interfere with the test.
+
+=cut
+
+sub diag {
+ $Test->diag(@_);
+}
+
+
+=back
+
+=head2 Module tests
+
+You usually want to test if the module you're testing loads ok, rather
+than just vomiting if its load fails. For such purposes we have
+C<use_ok> and C<require_ok>.
+
+=over 4
+
+=item B<use_ok>
+
+ BEGIN { use_ok($module); }
+ BEGIN { use_ok($module, @imports); }
+
+These simply use the given $module and test to make sure the load
+happened ok. It's recommended that you run use_ok() inside a BEGIN
+block so its functions are exported at compile-time and prototypes are
+properly honored.
+
+If @imports are given, they are passed through to the use. So this:
+
+ BEGIN { use_ok('Some::Module', qw(foo bar)) }
+
+is like doing this:
+
+ use Some::Module qw(foo bar);
+
+don't try to do this:
+
+ BEGIN {
+ use_ok('Some::Module');
+
+ ...some code that depends on the use...
+ ...happening at compile time...
+ }
+
+instead, you want:
+
+ BEGIN { use_ok('Some::Module') }
+ BEGIN { ...some code that depends on the use... }
+
+
+=cut
+
+sub use_ok ($;@) {
+ my($module, @imports) = @_;
+ @imports = () unless @imports;
+
+ my $pack = caller;
+
+ local($@,$!); # eval sometimes interferes with $!
+ eval <<USE;
+package $pack;
+require $module;
+'$module'->import(\@imports);
+USE
+
+ my $ok = $Test->ok( !$@, "use $module;" );
+
+ unless( $ok ) {
+ chomp $@;
+ $Test->diag(<<DIAGNOSTIC);
+ Tried to use '$module'.
+ Error: $@
+DIAGNOSTIC
+
+ }
+
+ return $ok;
+}
+
+=item B<require_ok>
+
+ require_ok($module);
+
+Like use_ok(), except it requires the $module.
+
+=cut
+
+sub require_ok ($) {
+ my($module) = shift;
+
+ my $pack = caller;
+
+ local($!, $@); # eval sometimes interferes with $!
+ eval <<REQUIRE;
+package $pack;
+require $module;
+REQUIRE
+
+ my $ok = $Test->ok( !$@, "require $module;" );
+
+ unless( $ok ) {
+ chomp $@;
+ $Test->diag(<<DIAGNOSTIC);
+ Tried to require '$module'.
+ Error: $@
+DIAGNOSTIC
+
+ }
+
+ return $ok;
+}
+
+=back
+
+=head2 Conditional tests
+
+Sometimes running a test under certain conditions will cause the
+test script to die. A certain function or method isn't implemented
+(such as fork() on MacOS), some resource isn't available (like a
+net connection) or a module isn't available. In these cases it's
+necessary to skip tests, or declare that they are supposed to fail
+but will work in the future (a todo test).
+
+For more details on the mechanics of skip and todo tests see
+L<Test::Harness>.
+
+The way Test::More handles this is with a named block. Basically, a
+block of tests which can be skipped over or made todo. It's best if I
+just show you...
+
+=over 4
+
+=item B<SKIP: BLOCK>
+
+ SKIP: {
+ skip $why, $how_many if $condition;
+
+ ...normal testing code goes here...
+ }
+
+This declares a block of tests that might be skipped, $how_many tests
+there are, $why and under what $condition to skip them. An example is
+the easiest way to illustrate:
+
+ SKIP: {
+ eval { require HTML::Lint };
+
+ skip "HTML::Lint not installed", 2 if $@;
+
+ my $lint = new HTML::Lint;
+ isa_ok( $lint, "HTML::Lint" );
+
+ $lint->parse( $html );
+ is( $lint->errors, 0, "No errors found in HTML" );
+ }
+
+If the user does not have HTML::Lint installed, the whole block of
+code I<won't be run at all>. Test::More will output special ok's
+which Test::Harness interprets as skipped, but passing, tests.
+It's important that $how_many accurately reflects the number of tests
+in the SKIP block so the # of tests run will match up with your plan.
+
+It's perfectly safe to nest SKIP blocks. Each SKIP block must have
+the label C<SKIP>, or Test::More can't work its magic.
+
+You don't skip tests which are failing because there's a bug in your
+program, or for which you don't yet have code written. For that you
+use TODO. Read on.
+
+=cut
+
+#'#
+sub skip {
+ my($why, $how_many) = @_;
+
+ unless( defined $how_many ) {
+ # $how_many can only be avoided when no_plan is in use.
+ _carp "skip() needs to know \$how_many tests are in the block"
+ unless $Test::Builder::No_Plan;
+ $how_many = 1;
+ }
+
+ for( 1..$how_many ) {
+ $Test->skip($why);
+ }
+
+ local $^W = 0;
+ last SKIP;
+}
+
+
+=item B<TODO: BLOCK>
+
+ TODO: {
+ local $TODO = $why if $condition;
+
+ ...normal testing code goes here...
+ }
+
+Declares a block of tests you expect to fail and $why. Perhaps it's
+because you haven't fixed a bug or haven't finished a new feature:
+
+ TODO: {
+ local $TODO = "URI::Geller not finished";
+
+ my $card = "Eight of clubs";
+ is( URI::Geller->your_card, $card, 'Is THIS your card?' );
+
+ my $spoon;
+ URI::Geller->bend_spoon;
+ is( $spoon, 'bent', "Spoon bending, that's original" );
+ }
+
+With a todo block, the tests inside are expected to fail. Test::More
+will run the tests normally, but print out special flags indicating
+they are "todo". Test::Harness will interpret failures as being ok.
+Should anything succeed, it will report it as an unexpected success.
+You then know the thing you had todo is done and can remove the
+TODO flag.
+
+The nice part about todo tests, as opposed to simply commenting out a
+block of tests, is it's like having a programmatic todo list. You know
+how much work is left to be done, you're aware of what bugs there are,
+and you'll know immediately when they're fixed.
+
+Once a todo test starts succeeding, simply move it outside the block.
+When the block is empty, delete it.
+
+
+=item B<todo_skip>
+
+ TODO: {
+ todo_skip $why, $how_many if $condition;
+
+ ...normal testing code...
+ }
+
+With todo tests, it's best to have the tests actually run. That way
+you'll know when they start passing. Sometimes this isn't possible.
+Often a failing test will cause the whole program to die or hang, even
+inside an C<eval BLOCK> with and using C<alarm>. In these extreme
+cases you have no choice but to skip over the broken tests entirely.
+
+The syntax and behavior is similar to a C<SKIP: BLOCK> except the
+tests will be marked as failing but todo. Test::Harness will
+interpret them as passing.
+
+=cut
+
+sub todo_skip {
+ my($why, $how_many) = @_;
+
+ unless( defined $how_many ) {
+ # $how_many can only be avoided when no_plan is in use.
+ _carp "todo_skip() needs to know \$how_many tests are in the block"
+ unless $Test::Builder::No_Plan;
+ $how_many = 1;
+ }
+
+ for( 1..$how_many ) {
+ $Test->todo_skip($why);
+ }
+
+ local $^W = 0;
+ last TODO;
+}
+
+=item When do I use SKIP vs. TODO?
+
+B<If it's something the user might not be able to do>, use SKIP.
+This includes optional modules that aren't installed, running under
+an OS that doesn't have some feature (like fork() or symlinks), or maybe
+you need an Internet connection and one isn't available.
+
+B<If it's something the programmer hasn't done yet>, use TODO. This
+is for any code you haven't written yet, or bugs you have yet to fix,
+but want to put tests in your testing script (always a good idea).
+
+
+=back
+
+=head2 Comparison functions
+
+Not everything is a simple eq check or regex. There are times you
+need to see if two arrays are equivalent, for instance. For these
+instances, Test::More provides a handful of useful functions.
+
+B<NOTE> These are NOT well-tested on circular references. Nor am I
+quite sure what will happen with filehandles.
+
+=over 4
+
+=item B<is_deeply>
+
+ is_deeply( $this, $that, $test_name );
+
+Similar to is(), except that if $this and $that are hash or array
+references, it does a deep comparison walking each data structure to
+see if they are equivalent. If the two structures are different, it
+will display the place where they start differing.
+
+Barrie Slaymaker's Test::Differences module provides more in-depth
+functionality along these lines, and it plays well with Test::More.
+
+B<NOTE> Display of scalar refs is not quite 100%
+
+=cut
+
+use vars qw(@Data_Stack);
+my $DNE = bless [], 'Does::Not::Exist';
+sub is_deeply {
+ my($this, $that, $name) = @_;
+
+ my $ok;
+ if( !ref $this || !ref $that ) {
+ $ok = $Test->is_eq($this, $that, $name);
+ }
+ else {
+ local @Data_Stack = ();
+ if( _deep_check($this, $that) ) {
+ $ok = $Test->ok(1, $name);
+ }
+ else {
+ $ok = $Test->ok(0, $name);
+ $ok = $Test->diag(_format_stack(@Data_Stack));
+ }
+ }
+
+ return $ok;
+}
+
+sub _format_stack {
+ my(@Stack) = @_;
+
+ my $var = '$FOO';
+ my $did_arrow = 0;
+ foreach my $entry (@Stack) {
+ my $type = $entry->{type} || '';
+ my $idx = $entry->{'idx'};
+ if( $type eq 'HASH' ) {
+ $var .= "->" unless $did_arrow++;
+ $var .= "{$idx}";
+ }
+ elsif( $type eq 'ARRAY' ) {
+ $var .= "->" unless $did_arrow++;
+ $var .= "[$idx]";
+ }
+ elsif( $type eq 'REF' ) {
+ $var = "\${$var}";
+ }
+ }
+
+ my @vals = @{$Stack[-1]{vals}}[0,1];
+ my @vars = ();
+ ($vars[0] = $var) =~ s/\$FOO/ \$got/;
+ ($vars[1] = $var) =~ s/\$FOO/\$expected/;
+
+ my $out = "Structures begin differing at:\n";
+ foreach my $idx (0..$#vals) {
+ my $val = $vals[$idx];
+ $vals[$idx] = !defined $val ? 'undef' :
+ $val eq $DNE ? "Does not exist"
+ : "'$val'";
+ }
+
+ $out .= "$vars[0] = $vals[0]\n";
+ $out .= "$vars[1] = $vals[1]\n";
+
+ $out =~ s/^/ /msg;
+ return $out;
+}
+
+
+=item B<eq_array>
+
+ eq_array(\@this, \@that);
+
+Checks if two arrays are equivalent. This is a deep check, so
+multi-level structures are handled correctly.
+
+=cut
+
+#'#
+sub eq_array {
+ my($a1, $a2) = @_;
+ return 1 if $a1 eq $a2;
+
+ my $ok = 1;
+ my $max = $#$a1 > $#$a2 ? $#$a1 : $#$a2;
+ for (0..$max) {
+ my $e1 = $_ > $#$a1 ? $DNE : $a1->[$_];
+ my $e2 = $_ > $#$a2 ? $DNE : $a2->[$_];
+
+ push @Data_Stack, { type => 'ARRAY', idx => $_, vals => [$e1, $e2] };
+ $ok = _deep_check($e1,$e2);
+ pop @Data_Stack if $ok;
+
+ last unless $ok;
+ }
+ return $ok;
+}
+
+sub _deep_check {
+ my($e1, $e2) = @_;
+ my $ok = 0;
+
+# my $eq;
+ {
+ # Quiet uninitialized value warnings when comparing undefs.
+ local $^W = 0;
+
+ if( $e1 eq $e2 ) {
+ $ok = 1;
+ }
+ else {
+ if( UNIVERSAL::isa($e1, 'ARRAY') and
+ UNIVERSAL::isa($e2, 'ARRAY') )
+ {
+ $ok = eq_array($e1, $e2);
+ }
+ elsif( UNIVERSAL::isa($e1, 'HASH') and
+ UNIVERSAL::isa($e2, 'HASH') )
+ {
+ $ok = eq_hash($e1, $e2);
+ }
+ elsif( UNIVERSAL::isa($e1, 'REF') and
+ UNIVERSAL::isa($e2, 'REF') )
+ {
+ push @Data_Stack, { type => 'REF', vals => [$e1, $e2] };
+ $ok = _deep_check($$e1, $$e2);
+ pop @Data_Stack if $ok;
+ }
+ elsif( UNIVERSAL::isa($e1, 'SCALAR') and
+ UNIVERSAL::isa($e2, 'SCALAR') )
+ {
+ push @Data_Stack, { type => 'REF', vals => [$e1, $e2] };
+ $ok = _deep_check($$e1, $$e2);
+ }
+ else {
+ push @Data_Stack, { vals => [$e1, $e2] };
+ $ok = 0;
+ }
+ }
+ }
+
+ return $ok;
+}
+
+
+=item B<eq_hash>
+
+ eq_hash(\%this, \%that);
+
+Determines if the two hashes contain the same keys and values. This
+is a deep check.
+
+=cut
+
+sub eq_hash {
+ my($a1, $a2) = @_;
+ return 1 if $a1 eq $a2;
+
+ my $ok = 1;
+ my $bigger = keys %$a1 > keys %$a2 ? $a1 : $a2;
+ foreach my $k (keys %$bigger) {
+ my $e1 = exists $a1->{$k} ? $a1->{$k} : $DNE;
+ my $e2 = exists $a2->{$k} ? $a2->{$k} : $DNE;
+
+ push @Data_Stack, { type => 'HASH', idx => $k, vals => [$e1, $e2] };
+ $ok = _deep_check($e1, $e2);
+ pop @Data_Stack if $ok;
+
+ last unless $ok;
+ }
+
+ return $ok;
+}
+
+=item B<eq_set>
+
+ eq_set(\@this, \@that);
+
+Similar to eq_array(), except the order of the elements is B<not>
+important. This is a deep check, but the irrelevancy of order only
+applies to the top level.
+
+B<NOTE> By historical accident, this is not a true set comparision.
+While the order of elements does not matter, duplicate elements do.
+
+=cut
+
+# We must make sure that references are treated neutrally. It really
+# doesn't matter how we sort them, as long as both arrays are sorted
+# with the same algorithm.
+sub _bogus_sort { local $^W = 0; ref $a ? 0 : $a cmp $b }
+
+sub eq_set {
+ my($a1, $a2) = @_;
+ return 0 unless @$a1 == @$a2;
+
+ # There's faster ways to do this, but this is easiest.
+ return eq_array( [sort _bogus_sort @$a1], [sort _bogus_sort @$a2] );
+}
+
+=back
+
+
+=head2 Extending and Embedding Test::More
+
+Sometimes the Test::More interface isn't quite enough. Fortunately,
+Test::More is built on top of Test::Builder which provides a single,
+unified backend for any test library to use. This means two test
+libraries which both use Test::Builder B<can be used together in the
+same program>.
+
+If you simply want to do a little tweaking of how the tests behave,
+you can access the underlying Test::Builder object like so:
+
+=over 4
+
+=item B<builder>
+
+ my $test_builder = Test::More->builder;
+
+Returns the Test::Builder object underlying Test::More for you to play
+with.
+
+=cut
+
+sub builder {
+ return Test::Builder->new;
+}
+
+=back
+
+
+=head1 NOTES
+
+Test::More is B<explicitly> tested all the way back to perl 5.004.
+
+Test::More is thread-safe for perl 5.8.0 and up.
+
+=head1 BUGS and CAVEATS
+
+=over 4
+
+=item Making your own ok()
+
+If you are trying to extend Test::More, don't. Use Test::Builder
+instead.
+
+=item The eq_* family has some caveats.
+
+=item Test::Harness upgrades
+
+no_plan and todo depend on new Test::Harness features and fixes. If
+you're going to distribute tests that use no_plan or todo your
+end-users will have to upgrade Test::Harness to the latest one on
+CPAN. If you avoid no_plan and TODO tests, the stock Test::Harness
+will work fine.
+
+If you simply depend on Test::More, it's own dependencies will cause a
+Test::Harness upgrade.
+
+=back
+
+
+=head1 HISTORY
+
+This is a case of convergent evolution with Joshua Pritikin's Test
+module. I was largely unaware of its existence when I'd first
+written my own ok() routines. This module exists because I can't
+figure out how to easily wedge test names into Test's interface (along
+with a few other problems).
+
+The goal here is to have a testing utility that's simple to learn,
+quick to use and difficult to trip yourself up with while still
+providing more flexibility than the existing Test.pm. As such, the
+names of the most common routines are kept tiny, special cases and
+magic side-effects are kept to a minimum. WYSIWYG.
+
+
+=head1 SEE ALSO
+
+L<Test::Simple> if all this confuses you and you just want to write
+some tests. You can upgrade to Test::More later (it's forward
+compatible).
+
+L<Test::Differences> for more ways to test complex data structures.
+And it plays well with Test::More.
+
+L<Test> is the old testing module. Its main benefit is that it has
+been distributed with Perl since 5.004_05.
+
+L<Test::Harness> for details on how your test results are interpreted
+by Perl.
+
+L<Test::Unit> describes a very featureful unit testing interface.
+
+L<Test::Inline> shows the idea of embedded testing.
+
+L<SelfTest> is another approach to embedded testing.
+
+
+=head1 AUTHORS
+
+Michael G Schwern E<lt>schwern@pobox.comE<gt> with much inspiration
+from Joshua Pritikin's Test module and lots of help from Barrie
+Slaymaker, Tony Bowden, chromatic and the perl-qa gang.
+
+
+=head1 COPYRIGHT
+
+Copyright 2001 by Michael G Schwern E<lt>schwern@pobox.comE<gt>.
+
+This program is free software; you can redistribute it and/or
+modify it under the same terms as Perl itself.
+
+See F<http://www.perl.com/perl/misc/Artistic.html>
+
+=cut
+
+1;