1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
|
Post processing pipeline
========================
The pipeline processes camera image and gaze data to enable gaze mapping and gaze analysis.
## post_processing_pipeline.json
For this use case we need to detect ArUco markers to enable gaze mapping: **ArGaze** provides the [ArUcoCamera](../../argaze.md/#argaze.ArUcoMarker.ArUcoCamera) class to setup an [ArUco markers pipeline](../../user_guide/aruco_marker_pipeline/introduction.md).
```json
{
"argaze.ArUcoMarker.ArUcoCamera.ArUcoCamera": {
"name": "ATC_Study",
"size": [1920, 1080],
"sides_mask": 420,
"copy_background_into_scenes_frames": true,
"aruco_detector": {
"dictionary": "DICT_APRILTAG_16h5",
"optic_parameters": "optic_parameters.json",
"parameters": {
"adaptiveThreshConstant": 20,
"useAruco3Detection": true
}
},
"gaze_movement_identifier": {
"argaze.GazeAnalysis.DispersionThresholdIdentification.GazeMovementIdentifier": {
"deviation_max_threshold": 25,
"duration_min_threshold": 150
}
},
"layers": {
"Main" : {
"aoi_matcher": {
"argaze.GazeAnalysis.DeviationCircleCoverage.AOIMatcher": {
"coverage_threshold": 0.5
}
},
"aoi_scan_path" : {
"duration_max": 60000
},
"aoi_scan_path_analyzers": {
"argaze.GazeAnalysis.Basic.AOIScanPathAnalyzer": {},
"argaze.GazeAnalysis.TransitionMatrix.AOIScanPathAnalyzer": {},
"argaze.GazeAnalysis.NGram.AOIScanPathAnalyzer": {
"n_min": 3,
"n_max": 5
},
"argaze.GazeAnalysis.Entropy.AOIScanPathAnalyzer": {}
},
"observers": {
"observers.AOIScanPathAnalysisRecorder": {
"path": "aoi_metrics.csv"
}
}
}
},
"image_parameters": {
"background_weight": 1,
"draw_gaze_positions": {
"color": [0, 255, 255],
"size": 4
},
"draw_detected_markers": {
"color": [0, 255, 0]
},
"draw_layers": {
"Main": {
"draw_aoi_scene": {
"draw_aoi": {
"color": [255, 255, 255],
"border_size": 1
}
},
"draw_aoi_matching": {
"update_looked_aoi": true,
"draw_looked_aoi": {
"color": [0, 255, 0],
"border_size": 2
},
"looked_aoi_name_color": [255, 255, 255],
"looked_aoi_name_offset": [0, -10]
}
}
}
},
"scenes": {
"Workspace": {
"aruco_markers_group": "workspace_markers.obj",
"layers": {
"Main" : {
"aoi_scene": "workspace_aois.obj"
}
},
"frames": {
"Sector_Screen": {
"size": [1080, 1017],
"gaze_movement_identifier": {
"argaze.GazeAnalysis.DispersionThresholdIdentification.GazeMovementIdentifier": {
"deviation_max_threshold": 25,
"duration_min_threshold": 150
}
},
"scan_path": {
"duration_max": 30000
},
"scan_path_analyzers": {
"argaze.GazeAnalysis.Basic.ScanPathAnalyzer": {},
"argaze.GazeAnalysis.ExploreExploitRatio.ScanPathAnalyzer": {
"short_fixation_duration_threshold": 0
},
"argaze.GazeAnalysis.KCoefficient.ScanPathAnalyzer": {}
},
"layers" :{
"Main": {
"aoi_scene": "sector_screen_aois.svg"
}
},
"heatmap": {
"size": [80, 60]
},
"image_parameters": {
"background_weight": 1,
"heatmap_weight": 0.5,
"draw_gaze_positions": {
"color": [0, 127, 127],
"size": 4
},
"draw_scan_path": {
"draw_fixations": {
"deviation_circle_color": [255, 255, 255],
"duration_border_color": [0, 127, 127],
"duration_factor": 1e-2
},
"draw_saccades": {
"line_color": [0, 255, 255]
},
"deepness": 0
},
"draw_layers": {
"Main": {
"draw_aoi_scene": {
"draw_aoi": {
"color": [255, 255, 255],
"border_size": 1
}
},
"draw_aoi_matching": {
"draw_matched_fixation": {
"deviation_circle_color": [255, 255, 255],
"draw_positions": {
"position_color": [0, 255, 0],
"line_color": [0, 0, 0]
}
},
"draw_looked_aoi": {
"color": [0, 255, 0],
"border_size": 2
},
"looked_aoi_name_color": [255, 255, 255],
"looked_aoi_name_offset": [10, 10]
}
}
}
},
"observers": {
"observers.ScanPathAnalysisRecorder": {
"path": "sector_screen.csv"
},
"observers.VideoRecorder": {
"path": "sector_screen.mp4",
"width": 1080,
"height": 1024,
"fps": 25
}
}
},
"Info_Screen": {
"size": [640, 1080],
"layers" : {
"Main": {
"aoi_scene": "info_screen_aois.svg"
}
}
}
}
}
},
"observers": {
"argaze.utils.UtilsFeatures.LookPerformanceRecorder": {
"path": "look_performance.csv"
},
"argaze.utils.UtilsFeatures.WatchPerformanceRecorder": {
"path": "watch_performance.csv"
}
}
}
}
```
All the files mentioned above are described below.
The *ScanPathAnalysisRecorder* and *AOIScanPathAnalysisRecorder* observers objects are defined into the [observers.py](observers.md) file that is described in the next chapter.
## optic_parameters.json
This file defines the Tobii Pro glasses 2 scene camera optic parameters which has been calculated as explained into [the camera calibration chapter](../../user_guide/aruco_marker_pipeline/advanced_topics/optic_parameters_calibration.md).
```json
{
"rms": 0.6688921504088245,
"dimensions": [
1920,
1080
],
"K": [
[
1135.6524381415752,
0.0,
956.0685325355497
],
[
0.0,
1135.9272506869524,
560.059099810324
],
[
0.0,
0.0,
1.0
]
],
"D": [
0.01655492265003404,
0.1985524264972037,
0.002129965902489484,
-0.0019528582922179365,
-0.5792910353639452
]
}
```
## workspace_markers.obj
This file defines the place where are the ArUco markers into the workspace geometry. Markers' positions have been edited in Blender software from a 3D model of the workspace built manually then exported at OBJ format.
```obj
# Blender v3.0.1 OBJ File: 'workspace.blend'
# www.blender.org
o DICT_APRILTAG_16h5#1_Marker
v -2.532475 48.421242 0.081627
v 2.467094 48.355682 0.077174
v 2.532476 53.352734 -0.081634
v -2.467093 53.418293 -0.077182
s off
f 1 2 3 4
o DICT_APRILTAG_16h5#6_Marker
v 88.144676 23.084166 -0.070246
v 93.144661 23.094980 -0.072225
v 93.133904 28.092941 0.070232
v 88.133919 28.082127 0.072211
s off
f 5 6 7 8
o DICT_APRILTAG_16h5#2_Marker
v -6.234516 27.087950 0.176944
v -1.244015 27.005413 -0.119848
v -1.164732 32.004459 -0.176936
v -6.155232 32.086998 0.119855
s off
f 9 10 11 12
o DICT_APRILTAG_16h5#3_Marker
v -2.518053 -2.481743 -0.018721
v 2.481756 -2.518108 0.005601
v 2.518059 2.481743 0.018721
v -2.481749 2.518108 -0.005601
s off
f 13 14 15 16
o DICT_APRILTAG_16h5#5_Marker
v 48.746418 48.319012 -0.015691
v 53.746052 48.374046 0.009490
v 53.690983 53.373741 0.015698
v 48.691349 53.318699 -0.009490
s off
f 17 18 19 20
o DICT_APRILTAG_16h5#4_Marker
v 23.331947 -3.018721 5.481743
v 28.331757 -2.994399 5.518108
v 28.368059 -2.981279 0.518257
v 23.368252 -3.005600 0.481892
s off
f 21 22 23 24
```
## workspace_aois.obj
This file defines the place of the AOI into the workspace geometry. AOI positions have been edited in [Blender software](https://www.blender.org/) from a 3D model of the workspace built manually then exported at OBJ format.
```obj
# Blender v3.0.1 OBJ File: 'workspace.blend'
# www.blender.org
o Sector_Screen
v 0.000000 1.008786 0.000000
v 51.742416 1.008786 0.000000
v 0.000000 52.998108 0.000000
v 51.742416 52.998108 0.000000
s off
f 1 2 4 3
o Info_Screen
v 56.407101 0.000000 0.000000
v 91.407104 0.000000 0.000000
v 56.407101 52.499996 0.000000
v 91.407104 52.499996 0.000000
s off
f 5 6 8 7
```
## sector_screen_aois.svg
This file defines the place of the AOI into the sector screen frame. AOI positions have been edited [Inkscape software](https://inkscape.org/fr/) from a screenshot of the sector screen then exported at SVG format.
```svg
<svg >
<path id="Area_1" d="M317.844,198.526L507.431,426.837L306.453,595.073L110.442,355.41L317.844,198.526Z"/>
<path id="Area_2" d="M507.431,426.837L611.554,563.624L444.207,750.877L306.453,595.073L507.431,426.837Z"/>
<path id="Area_3" d="M395.175,1017L444.207,750.877L611.554,563.624L1080,954.462L1080,1017L395.175,1017Z"/>
<path id="Area_4" d="M611.554,563.624L756.528,293.236L562.239,198.526L471.45,382.082L611.554,563.624Z"/>
<path id="Area_5" d="M0,900.683L306.453,595.073L444.207,750.877L395.175,1017L0,1017L0,900.683Z"/>
<path id="Area_6" d="M471.45,381.938L557.227,207.284L354.832,65.656L237.257,104.014L471.45,381.938Z"/>
<path id="Area_7" d="M0,22.399L264.521,24.165L318.672,77.325L237.257,103.625L248.645,118.901L0,80.963L0,22.399Z"/>
</svg>
```
## info_screen_aois.svg
This file defines the place of the AOI into the info screen frame. AOI positions have been edited [Inkscape software](https://inkscape.org/fr/) from a screenshot of the info screen then exported at SVG format.
```svg
<svg >
<rect id="Strips" x="0" y="880" width="640" height="200"/>
</svg>
```
## aoi_metrics.csv
The file contains all the metrics recorded by the *AOIScanPathAnalysisRecorder* objects as defined into the [observers.py](observers.md) file.
## sector_screen.csv
The file contains all the metrics recorded by the *ScanPathAnalysisRecorder* objects as defined into the [observers.py](observers.md) file.
## sector_screen.mp4
The video file is a record of the sector screen frame image.
## look_performance.csv
This file contains the logs of *ArUcoCamera.look* method execution info. It is created into the folder where the [*load* command](../../user_guide/utils/main_commands.md) is launched.
On a MacBookPro (2.3GHz Intel Core i9 8 cores), the *look* method execution time is ~1ms and it is called ~51 times per second.
## watch_performance.csv
This file contains the logs of *ArUcoCamera.watch* method execution info. It is created into the folder from where the [*load* command](../../user_guide/utils/main_commands.md) is launched.
On a MacBookPro (2.3GHz Intel Core i9 8 cores) without CUDA acceleration, the *watch* method execution time is ~52ms and it is called more than 12 times per second.
|