blob: 892fef89df1366c6a492409ee04cf38538599911 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
|
Ready-made scripts
==================
Collection of command-line scripts to provide useful features.
!!! note
*Consider that all inline commands below have to be executed at the root of ArGaze package folder.*
!!! note
*Use -h option to get command arguments documentation.*
## Load ArContext JSON configuration
Load and execute any [ArContext](../../argaze.md/#argaze.ArFeatures.ArContext) from a JSON CONFIGURATION file
```shell
python -m argaze load CONFIGURATION
```
### Send command
Use -p option to enable pipe communication at given address:
```shell
python -m argaze load CONFIGURATION -p /tmp/argaze
```
Open another tab in the **same** Terminal window then, you can send any Python command into the pipe.
For example:
* Print context:
```shell
echo "print(context)" > /tmp/argaze
```
* Pause context processing:
```shell
echo "context.pause()" > /tmp/argaze
```
* Resume context processing:
```shell
echo "context.resume()" > /tmp/argaze
```
## Edit JSON configuration
Modify the content of JSON CONFIGURATION file with another JSON CHANGES file then, save the result into an OUTPUT file
```shell
python -m argaze edit CONFIGURATION CHANGES OUTPUT
```
## Estimate ArUco markers pose
This application detects ArUco markers inside a movie frame then, export pose estimation as .obj file into a folder.
Firstly, edit **utils/estimate_markers_pose/context.json** file as to select a movie *path*.
Sencondly, edit **utils/estimate_markers_pose/pipeline.json** file to setup ArUco detector *dictionary*, *pose_size* and *pose_ids* attributes.
Then, launch the application.
```shell
python -m argaze load ./src/argaze/utils/estimate_markers_pose/context.json
```
|