1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
|
#!/usr/bin/env python
from dataclasses import dataclass
import math
from argaze import DataStructures
from argaze.AreaOfInterest import AOIFeatures
import numpy
FIXATION_MAX_DURATION = 1000
@dataclass
class GazePosition():
"""Define gaze position."""
x: float
y: float
def as_tuple(self):
return (self.x, self.y)
class TimeStampedGazePositions(DataStructures.TimeStampedBuffer):
"""Define timestamped buffer to store gaze positions."""
def __setitem__(self, key, value: GazePosition):
"""Force value to be a GazePosition"""
if type(value) != GazePosition:
raise ValueError('value must be a GazePosition')
super().__setitem__(key, value)
@dataclass
class Fixation():
"""Define fixation"""
duration: float
dispersion: float
centroid: tuple((float, float))
class TimeStampedFixations(DataStructures.TimeStampedBuffer):
"""Define timestamped buffer to store fixations."""
def __setitem__(self, key, value: Fixation):
"""Force value to be a Fixation"""
if type(value) != Fixation:
raise ValueError('value must be a Fixation')
super().__setitem__(key, value)
class FixationIdentifier():
"""Abstract class to define what should provide a fixation identifier."""
def __init__(self, ts_gaze_positions: TimeStampedGazePositions):
if type(ts_gaze_positions) != TimeStampedGazePositions:
raise ValueError('argument must be a TimeStampedGazePositions')
def __iter__(self):
raise NotImplementedError('__iter__() method not implemented')
def __next__(self):
raise NotImplementedError('__next__() method not implemented')
def identify(self):
fixations = GazeFeatures.TimeStampedFixations()
for ts, item in self:
if item == None:
continue
fixations[ts] = item
return fixations
class DispersionBasedFixationIdentifier(FixationIdentifier):
"""Implementation of the I-DT algorithm as described in:
Dario D. Salvucci and Joseph H. Goldberg. 2000. Identifying fixations and
saccades in eye-tracking protocols. In Proceedings of the 2000 symposium
on Eye tracking research & applications (ETRA '00). ACM, New York, NY, USA,
71-78. DOI=http://dx.doi.org/10.1145/355017.355028
"""
def __init__(self, ts_gaze_positions, dispersion_threshold = 10, duration_threshold = 100):
super().__init__(ts_gaze_positions)
self.__dispersion_threshold = dispersion_threshold
self.__duration_threshold = duration_threshold
# process identification on a copy
self.__ts_gaze_positions = ts_gaze_positions.copy()
def __getEuclideanDispersion(self, ts_gaze_positions_list):
"""Euclidian dispersion algorithm"""
x_list = [gp.x for (ts, gp) in ts_gaze_positions_list]
y_list = [gp.y for (ts, gp) in ts_gaze_positions_list]
cx = numpy.mean(x_list)
cy = numpy.mean(y_list)
c = [cx, cy]
points = numpy.column_stack([x_list, y_list])
dist = (points - c)**2
dist = numpy.sum(dist, axis=1)
dist = numpy.sqrt(dist)
return max(dist), cx, cy
def __getDispersion(self, ts_gaze_positions_list):
"""Basic dispersion algorithm"""
# TODO : allow to select this algorithm
x_list = [gp.x for (ts, gp) in ts_gaze_positions_list]
y_list = [gp.y for (ts, gp) in ts_gaze_positions_list]
return (max(x_list) - min(x_list)) + (max(y_list) - min(y_list))
def __iter__(self):
"""Start fixation identification"""
return self
def __next__(self):
# while there are 2 gaze positions at least
if len(self.__ts_gaze_positions) >= 2:
# copy remaining timestamped gaze positions
remaining_ts_gaze_positions = self.__ts_gaze_positions.copy()
# select timestamped gaze position until a duration threshold
(ts_start, gaze_position_start) = remaining_ts_gaze_positions.pop_first()
(ts_current, gaze_position_current) = remaining_ts_gaze_positions.pop_first()
ts_gaze_positions_list = [(ts_start, gaze_position_start)]
while (ts_current - ts_start) < self.__duration_threshold:
ts_gaze_positions_list.append( (ts_current, gaze_position_current) )
if len(remaining_ts_gaze_positions) > 0:
(ts_current, gaze_position_current) = remaining_ts_gaze_positions.pop_first()
else:
break
# how much gaze is dispersed ?
dispersion, cx, cy = self.__getEuclideanDispersion(ts_gaze_positions_list)
# little dispersion
if dispersion <= self.__dispersion_threshold:
# remove selected gaze positions
for gp in ts_gaze_positions_list:
self.__ts_gaze_positions.pop_first()
# are next gaze positions not too dispersed ?
while len(remaining_ts_gaze_positions) > 0:
# select next gaze position
ts_gaze_positions_list.append(remaining_ts_gaze_positions.pop_first())
new_dispersion, new_cx, new_cy = self.__getEuclideanDispersion(ts_gaze_positions_list)
# dispersion too wide
if new_dispersion > self.__dispersion_threshold:
# remove last gaze position
ts_gaze_positions_list.pop(-1)
break
# store new dispersion data
dispersion = new_dispersion
cx = new_cx
cy = new_cy
# remove selected gaze position
self.__ts_gaze_positions.pop_first()
# we have a new fixation
ts_list = [ts for (ts, gp) in ts_gaze_positions_list]
duration = ts_list[-1] - ts_list[0]
if duration > FIXATION_MAX_DURATION:
duration = FIXATION_MAX_DURATION
if duration > 0:
# return timestamp and fixation
return ts_list[0], Fixation(duration, dispersion, (cx, cy))
return -1, None
# dispersion too wide : consider next gaze position
else:
self.__ts_gaze_positions.pop_first()
# if no fixation found, go to next
return -1, None
else:
raise StopIteration
return -1, None
@dataclass
class VisualScanStep():
"""Define a visual scan step as a duration, the name of the area of interest and where gaze looked at in each frame during the step."""
duration: float
area: str
look_at: DataStructures.TimeStampedBuffer
class TimeStampedVisualScanSteps(DataStructures.TimeStampedBuffer):
"""Define timestamped buffer to store visual scan steps."""
def __setitem__(self, key, value: VisualScanStep):
"""Force value to be a VisualScanStep"""
if type(value) != VisualScanStep:
raise ValueError('value must be a VisualScanStep')
super().__setitem__(key, value)
class VisualScanGenerator():
"""Abstract class to define when an aoi starts to be looked and when it stops."""
def __init__(self, ts_aoi_scenes: AOIFeatures.TimeStampedAOIScenes):
if type(ts_aoi_scenes) != AOIFeatures.TimeStampedAOIScenes:
raise ValueError('argument must be a TimeStampedAOIScenes')
def __iter__(self):
raise NotImplementedError('__iter__() method not implemented')
def build(self):
visual_scan_steps = TimeStampedVisualScanSteps()
for ts, step in self:
if step == None:
continue
visual_scan_steps[ts] = step
return TimeStampedVisualScanSteps(sorted(visual_scan_steps.items()))
class PointerBasedVisualScan(VisualScanGenerator):
"""Build visual scan on the basis of which AOI are looked."""
def __init__(self, ts_aoi_scenes: AOIFeatures.TimeStampedAOIScenes, ts_gaze_positions: TimeStampedGazePositions):
super().__init__(ts_aoi_scenes)
# process identification on a copy
self.__ts_aoi_scenes = ts_aoi_scenes.copy()
self.__ts_gaze_positions = ts_gaze_positions.copy()
# a dictionary to store when an aoi starts to be looked
self.__step_dict = {}
def __iter__(self):
"""Visual scan generator function."""
# while there is aoi scene to process
while len(self.__ts_aoi_scenes) > 0:
(ts_current, aoi_scene_current) = self.__ts_aoi_scenes.pop_first()
try:
gaze_position = self.__ts_gaze_positions[ts_current]
for name, aoi in aoi_scene_current.areas.items():
looked = aoi.looked(gaze_position)
if looked:
if not name in self.__step_dict.keys():
# aoi starts to be looked
self.__step_dict[name] = {
'start': ts_current,
'look_at': DataStructures.TimeStampedBuffer()
}
# store where the aoi is looked
self.__step_dict[name]['look_at'][ts_current] = aoi.look_at(gaze_position).tolist()
elif name in self.__step_dict.keys():
ts_start = self.__step_dict[name]['start']
# aoi stops to be looked
yield ts_start, VisualScanStep(ts_current - ts_start, name, self.__step_dict[name]['look_at'])
# forget the aoi
del self.__step_dict[name]
# ignore missing gaze position
except KeyError:
pass
class FixationBasedVisualScan(VisualScanGenerator):
"""Build visual scan on the basis of timestamped fixations."""
def __init__(self, ts_aoi_scenes: AOIFeatures.TimeStampedAOIScenes, ts_fixations: TimeStampedFixations):
super().__init__(ts_aoi_scenes)
if type(ts_fixations) != TimeStampedFixations:
raise ValueError('second argument must be a GazeFeatures.TimeStampedFixations')
# process identification on a copy
self.__ts_aoi_scenes = ts_aoi_scenes.copy()
self.__ts_fixations = ts_fixations.copy()
def __iter__(self):
"""Visual scan generator function."""
yield -1, None
|