aboutsummaryrefslogtreecommitdiff
path: root/src/argaze/GazeFeatures.py
blob: fc07ca2d8ce78cc497fd0dfe49ef1982e31a8a45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
#!/usr/bin/env python

from dataclasses import dataclass, field
import math

from argaze import DataStructures
from argaze.AreaOfInterest import AOIFeatures

import numpy
import pandas

GazePosition = tuple
"""Define gaze position as a tuple of coordinates."""

class TimeStampedGazePositions(DataStructures.TimeStampedBuffer):
    """Define timestamped buffer to store gaze positions."""

    def __setitem__(self, key, value: GazePosition):
        super().__setitem__(key, value)

@dataclass
class Movement():
    """Define abstract movement class."""

    positions: TimeStampedGazePositions
    duration: float = field(init=False)

    def __post_init__(self):

        start_position_ts, start_position = self.positions.get_first()
        end_position_ts, end_position = self.positions.get_last()

        self.duration = round(end_position_ts - start_position_ts)

Fixation = Movement
"""Define abstract fixation as movement."""

Saccade = Movement
"""Define abstract saccade as movement."""

class TimeStampedMovements(DataStructures.TimeStampedBuffer):
    """Define timestamped buffer to store movements."""

    def __setitem__(self, key, value: Movement):
        super().__setitem__(key, value)

@dataclass
class GazeStatus():
    """Define gaze status as a position belonging to an identified and indexed movement."""

    position: GazePosition
    movement_type: str
    movement_index: int

class TimeStampedGazeStatus(DataStructures.TimeStampedBuffer):
    """Define timestamped buffer to store gaze status."""

    def __setitem__(self, key, value: GazeStatus):
        super().__setitem__(key, value)

class MovementIdentifier():
    """Abstract class to define what should provide a movement identifier."""

    def __init__(self, ts_gaze_positions: TimeStampedGazePositions):

        if type(ts_gaze_positions) != TimeStampedGazePositions:
            raise ValueError('argument must be a TimeStampedGazePositions')

    def __iter__(self):
        raise NotImplementedError('__iter__() method not implemented')

    def __next__(self):
        raise NotImplementedError('__next__() method not implemented')

class DispersionBasedMovementIdentifier(MovementIdentifier):
    """Implementation of the I-DT algorithm as described in:
        
            Dario D. Salvucci and Joseph H. Goldberg. 2000. Identifying fixations and
            saccades in eye-tracking protocols. In Proceedings of the 2000 symposium
            on Eye tracking research & applications (ETRA '00). ACM, New York, NY, USA,
            71-78. DOI=http://dx.doi.org/10.1145/355017.355028
    """

    @dataclass
    class DispersionBasedFixation(Fixation):
        """Define dispersion based fixation as an algorithm specific fixation."""

        dispersion: float = field(init=False)
        euclidian: bool = field(default=True)

        centroid: GazePosition = field(init=False)

        def __post_init__(self):

            super().__post_init__()

            x_list = [gp[0] for (ts, gp) in list(self.positions.items())]
            y_list = [gp[1] for (ts, gp) in list(self.positions.items())]

            cx = round(numpy.mean(x_list))
            cy = round(numpy.mean(y_list))

            # select dispersion algorithm
            if self.euclidian:

                c = [cx, cy]
                points = numpy.column_stack([x_list, y_list])

                dist = (points - c)**2
                dist = numpy.sum(dist, axis=1)
                dist = numpy.sqrt(dist)

                self.dispersion = round(max(dist))

            else:

                self.dispersion = (max(x_list) - min(x_list)) + (max(y_list) - min(y_list))

            self.centroid = (cx, cy)

    @dataclass
    class DispersionBasedSaccade(Saccade):
        """Define dispersion based saccade as an algorithm specific saccade."""

        def __post_init__(self):
            super().__post_init__()

    def __init__(self, ts_gaze_positions, dispersion_threshold = 10, duration_threshold = 100):

        super().__init__(ts_gaze_positions)

        self.__dispersion_threshold = dispersion_threshold
        self.__duration_threshold = duration_threshold

        # process identification on a copy
        self.__ts_gaze_positions = ts_gaze_positions.copy()

        self.__last_fixation = None

    def __iter__(self):
        """Movement identification generator."""

        # while there are 2 gaze positions at least
        while len(self.__ts_gaze_positions) >= 2:

            # copy remaining timestamped gaze positions
            remaining_ts_gaze_positions = self.__ts_gaze_positions.copy()

            # select timestamped gaze position until a duration threshold
            (ts_start, gaze_position_start) = remaining_ts_gaze_positions.pop_first()
            (ts_current, gaze_position_current) = remaining_ts_gaze_positions.pop_first()

            ts_gaze_positions = TimeStampedGazePositions()
            ts_gaze_positions[ts_start] = gaze_position_start

            while (ts_current - ts_start) < self.__duration_threshold:

                ts_gaze_positions[ts_current] = gaze_position_current

                if len(remaining_ts_gaze_positions) > 0:
                    (ts_current, gaze_position_current) = remaining_ts_gaze_positions.pop_first()
                else:
                    break

            # is it a new fixation ?
            new_fixation = DispersionBasedMovementIdentifier.DispersionBasedFixation(ts_gaze_positions)

            # dispersion is small
            if new_fixation.dispersion <= self.__dispersion_threshold:

                # remove selected gaze positions
                for gp in ts_gaze_positions:
                    self.__ts_gaze_positions.pop_first()

                # are next gaze positions not too dispersed ?
                while len(remaining_ts_gaze_positions) > 0:

                    # select next gaze position
                    ts_next, position_next = remaining_ts_gaze_positions.pop_first()
                    ts_gaze_positions[ts_next] = position_next

                    # how much gaze is dispersed ?
                    updated_fixation = DispersionBasedMovementIdentifier.DispersionBasedFixation(ts_gaze_positions)

                    # dispersion is becomes too wide : ignore updated fixation
                    if updated_fixation.dispersion > self.__dispersion_threshold:
                        break

                    # update new fixation
                    new_fixation = updated_fixation

                    # remove selected gaze position
                    self.__ts_gaze_positions.pop_first()

                # is the new fixation have a duration ?
                if new_fixation.duration > 0:

                    if self.__last_fixation != None:

                        # store start and end positions in a timestamped buffer
                        ts_saccade_positions = TimeStampedGazePositions()

                        start_position_ts, start_position = self.__last_fixation.positions.pop_last()
                        ts_saccade_positions[start_position_ts] = start_position

                        end_position_ts, end_position = new_fixation.positions.pop_first()
                        ts_saccade_positions[end_position_ts] = end_position

                        if end_position_ts > start_position_ts:

                            new_saccade = DispersionBasedMovementIdentifier.DispersionBasedSaccade(ts_saccade_positions)
                        
                            yield new_saccade

                    self.__last_fixation = new_fixation

                    yield new_fixation

            # dispersion too wide : consider next gaze position
            else:
                self.__ts_gaze_positions.pop_first()

@dataclass
class VisualScanStep():
    """Define a visual scan step as a start timestamp, duration, the name of the area of interest and where gaze looked at in each frame during the step."""

    timestamp: int
    duration: float
    area: str
    look_at: DataStructures.TimeStampedBuffer

class VisualScanGenerator():
    """Abstract class to define when an aoi starts to be looked and when it stops."""

    visual_scan_steps: list

    def __init__(self, ts_aoi_scenes: AOIFeatures.TimeStampedAOIScenes):

        if type(ts_aoi_scenes) != AOIFeatures.TimeStampedAOIScenes:
            raise ValueError('argument must be a TimeStampedAOIScenes')

        self.visual_scan_steps = []

        for step in self:

            if step == None:
                continue

            self.visual_scan_steps.append(step)

    def __iter__(self):
        raise NotImplementedError('__iter__() method not implemented')

    def steps(self):
        return self.visual_scan_steps

    def as_dataframe(self):
        """Convert buffer as pandas dataframe."""

        df = pandas.DataFrame.from_dict(self.visual_scan_steps)
        df.set_index('timestamp', inplace=True)
        df.sort_values(by=['timestamp'], inplace=True)

        return df

    def export_as_csv(self, filepath):
        """Write buffer content into a csv file."""
        try:

            self.as_dataframe().to_csv(filepath, index=True)

        except:
            raise RuntimeError(f'Can\' write {filepath}')

class PointerBasedVisualScan(VisualScanGenerator):
    """Build visual scan on the basis of which AOI are looked."""

    def __init__(self, ts_aoi_scenes: AOIFeatures.TimeStampedAOIScenes, ts_gaze_positions: TimeStampedGazePositions):

        # process identification on a copy
        self.__ts_aoi_scenes = ts_aoi_scenes.copy()
        self.__ts_gaze_positions = ts_gaze_positions.copy()

        # a dictionary to store when an aoi starts to be looked
        self.__step_dict = {}

        # build visual scan
        super().__init__(ts_aoi_scenes)

    def __iter__(self):
        """Visual scan generator function."""

        # while there is aoi scene to process
        while len(self.__ts_aoi_scenes) > 0:

            (ts_current, aoi_scene_current) = self.__ts_aoi_scenes.pop_first()

            try:

                gaze_position = self.__ts_gaze_positions[ts_current]

                for name, aoi in aoi_scene_current.items():

                    looked = aoi.looked(gaze_position)

                    if looked:

                        if not name in self.__step_dict.keys():

                            # aoi starts to be looked
                            self.__step_dict[name] = {
                                'start': ts_current,
                                'look_at': DataStructures.TimeStampedBuffer()
                            }

                        # store where the aoi is looked for 4 corners aoi
                        if len(aoi) == 4:
                            self.__step_dict[name]['look_at'][round(ts_current)] = aoi.look_at(gaze_position)

                    elif name in self.__step_dict.keys():

                        ts_start = self.__step_dict[name]['start']

                        # aoi stops to be looked
                        yield VisualScanStep(round(ts_start), round(ts_current - ts_start), name, self.__step_dict[name]['look_at'])

                        # forget the aoi
                        del self.__step_dict[name]

            # ignore missing gaze position
            except KeyError:
                pass

        # close started steps
        for name, step in self.__step_dict.items():

            ts_start = step['start']

            # aoi stops to be looked
            yield VisualScanStep(round(ts_start), round(ts_current - ts_start), name, step['look_at'])

class FixationBasedVisualScan(VisualScanGenerator):
    """Build visual scan on the basis of timestamped fixations."""

    def __init__(self, ts_aoi_scenes: AOIFeatures.TimeStampedAOIScenes, ts_fixations: TimeStampedMovements):

        super().__init__(ts_aoi_scenes)

        if type(ts_fixations) != TimeStampedMovements:
            raise ValueError('second argument must be a GazeFeatures.TimeStampedMovements')

        # process identification on a copy
        self.__ts_aoi_scenes = ts_aoi_scenes.copy()
        self.__ts_fixations = ts_fixations.copy()

    def __iter__(self):
        """Visual scan generator function."""

        yield -1, None