1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
|
class WACOM_POINTER
create {XINPUT_IVY}
make, make_self_test
feature {}
make(a_xinput_ivy: XINPUT_IVY) is
require
a_xinput_ivy /= Void
do
xinput_ivy := a_xinput_ivy
prediction_time := 25
end
make_self_test is
local
angle: REAL
x, y: REAL
mc: MATH_CONSTANTS
i: INTEGER
do
from
angle := 80
prediction_time := 10
until
i > 36
loop
x := (angle * mc.Pi / 180).cos * 1000
y := (angle * mc.Pi / 180).sin * 1000
if i > 2 then
--io.put_string(once "Real position: x=")
io.put_real(x)
--io.put_string(once ", y=")
io.put_character(' ')
io.put_real(y)
io.put_new_line
end
update_predicted_position(x, y, angle)
if i >= 2 then
--io.put_string(once "Predicted position: x=")
io.put_real(predicted_x)
--io.put_string(once ", y=")
io.put_character(' ')
io.put_real(predicted_y)
io.put_character(' ')
--io.put_new_line
end
angle := angle + prediction_time
i := i + 1
end
end
xinput_ivy: XINPUT_IVY
x_offset, y_offset: INTEGER
cropping: BOOLEAN
x_min_crop, y_min_crop, x_max_crop, y_max_crop, crop_width, crop_height: INTEGER
prediction_time: REAL
ignore_rate, ignored_counter: INTEGER
pointer_message_header, button_message_header: STRING
old_presure: INTEGER
type_to_name(type_id: INTEGER): STRING is
do
inspect type_id
when 2066 then Result := once "pen_2066" -- 0x812
when 2049 then Result := once "pen_2049" -- 0x801
-- 0x012
when 2082 then Result := once "pen_2082" -- 0x822
-- 0x842
-- 0x852
when 2083 then Result := once "grip_pen_2083" -- 0x823
when 2067 then Result := once "classic_pen_2067" -- 0x813
when 2181 then Result := once "marker_pen_2181" -- 0x885
-- 0x022
when 2098 then Result := once "stroke_pen_2098" -- 0x832
-- 0x032
when 3346 then Result := once "airbrush_3346" -- 0xd12
-- 0x912
-- 0x112
when 2323 then Result := once "airbrush_2323" -- 0x913
when 2090 then Result := once "eraser_2090" -- 0x82a
-- 0x85a
-- 0x91a
-- 0xd1a
-- 0x0fa
when 2091 then Result := once "grip_pen_eraser_2091" -- 0x82b
when 2075 then Result := once "classic_pen_eraser_2075" -- 0x81b
when 2331 then Result := once "airbrush_eraser_2331" -- 0x91b
else
Result := once ""
Result.clear_count
type_id.append_in(Result)
end
end
feature {}
reconfigure_crop(parameters: FAST_ARRAY[STRING]) is
-- parameters.item(0): crop configuration
require
parameters.count = 1
do
if is_valid_crop(parameters.item(0)) then
set_crop(parameters.item(0))
else
io.put_string(once "Recieved CHANGE_CROP message with %
%invalid crop definition: ")
io.put_line(parameters.item(0))
end
end
feature {XINPUT_IVY}
set_x_offset(offset: INTEGER) is
do
x_offset := offset
end
set_y_offset(offset: INTEGER) is
do
y_offset := offset
end
is_valid_crop(description: STRING): BOOLEAN is
require
description /= Void
local
tmp: STRING
values: ARRAY[STRING]
do
Result := description.occurrences(',') = 3
if Result then
tmp := description.twin
tmp.replace_all(',', ' ')
from
values := tmp.split
Result := values.count = 4
until
not Result or else values.is_empty
loop
Result := values.last.is_integer
values.remove_last
end
end
end
set_crop(description: STRING) is
require
is_valid_crop(description)
local
values: ARRAY[STRING]
do
description.replace_all(',', ' ')
values := description.split
x_min_crop := values.item(1).to_integer
y_min_crop := values.item(2).to_integer
x_max_crop := values.item(3).to_integer
y_max_crop := values.item(4).to_integer
cropping := True
crop_width := x_max_crop - x_min_crop
crop_height := y_max_crop - y_min_crop
end
set_prediction (milliseconds: REAL) is
do
prediction_time := milliseconds
end
set_ignore_rate (n: INTEGER) is
do
ignore_rate := n
end
set_message_header (header: STRING) is
local
history_size: INTEGER
do
pointer_message_header := "pointer"
pointer_message_header.append(header)
button_message_header := "button"
button_message_header.append(header)
history_size := 1
create x_history.make(0, history_size)
create y_history.make(0, history_size)
create time_history.make(0, history_size)
end
crop_identifier (id: STRING) is
local
msg: STRING
do
msg := once ""
msg.clear_count
msg.append(once "^CHANGE_CROP device_id=")
msg.append(id)
msg.append(once " crop=(.*)")
xinput_ivy.ivy.subscribe(msg, agent reconfigure_crop)
end
device_to_screen_x (x: INTEGER): INTEGER is
do
Result := ((x - 150) / 86650 * 1600 + x_offset).force_to_integer_32 -- **** geometrie paramétrable
end
device_to_screen_y(y: INTEGER): INTEGER is
do
Result := ((y - 300) / 64700 * 1200 + y_offset).force_to_integer_32 -- **** geometrie paramétrable
end
x_history, y_history, time_history: RING_ARRAY[INTEGER]
mean(history: RING_ARRAY[INTEGER]): REAL is
require
history.count > 0
local
sum: INTEGER_64
i: INTEGER
do
from
i := history.lower
until
i > history.upper
loop
sum := sum + history.item(i)
i := i + 1
end
Result := sum / history.count
end
move (pointer: X_INPUT_DEVICE) is
local
x, y, presure: INTEGER
t3: REAL_64
message: STRING
do
x := pointer.motion_axis_data(1)
y := pointer.motion_axis_data(2)
--update_predicted_position(x, y, pointer.event_time)
x_history.remove_first
x_history.add_last(x)
y_history.remove_first
y_history.add_last(y)
time_history.remove_first
time_history.add_last(pointer.event_time)
t3 := mean(time_history)
if t3 /= t2 then
update_predicted_position(mean(x_history), mean(y_history), t3)
end
presure := pointer.motion_axis_data(3)
if cropping then
if x < x_min_crop or else y < y_min_crop or else x > x_max_crop or else y > y_max_crop then
ignored_counter := -1
end
end
if ignored_counter < ignore_rate and then ((old_presure = 0) = (presure = 0)) then
ignored_counter := ignored_counter + 1
else
ignored_counter := 0
message := once ""
message.copy(pointer_message_header)
print_data_in(message, x, y, presure, pointer.motion_axis_data(4),
pointer.motion_axis_data(5),
pointer.motion_axis_data(6), pointer.event_time,
once "unchanged")
xinput_ivy.ivy.send_message(message)
end
old_presure := presure
end
print_data_in(message: STRING; x, y, presure, v4, v5, v6, time: INTEGER; proximity_description: STRING) is
do
message.append(once " x=")
device_to_screen_x(x).append_in(message)
message.append(once " y=")
device_to_screen_y(y).append_in(message)
message.append(once " presure=")
presure.append_in(message)
message.append(once " tilt_x=")
v4.low_16.append_in(message)
message.append(once " tilt_y=")
v5.low_16.append_in(message)
message.append(once " wheel=")
v6.low_16.append_in(message)
message.append(once " predicted_x=")
device_to_screen_x(predicted_x).append_in(message)
message.append(once " predicted_y=")
device_to_screen_y(predicted_y).append_in(message)
message.append(once " type=")
message.append(type_to_name(v4.high_16))
message.append(once " serial_number=")
(v5.high_16.to_integer_32 |<< 16).bit_or((0x0000FFFF).bit_and(v6.high_16)).append_in(message)
message.append(once " time=")
time.append_in(message)
message.append(once " hires_x=")
if not cropping then
(x/86400).append_in(message) -- **** geometrie paramétrable
else
((x - x_min_crop) / crop_width).append_in(message)
end
message.append(once " hires_y=")
if not cropping then
(y/65000).append_in(message) -- **** geometrie paramétrable
else
((y - y_min_crop) / crop_height).append_in(message)
end
message.append(once " proximity=")
message.append(proximity_description)
end
button(pressed: BOOLEAN; pointer: X_INPUT_DEVICE) is
local
x, y, presure: INTEGER
t3: REAL_64
message: STRING
do
x := pointer.motion_axis_data(1)
y := pointer.motion_axis_data(2)
--update_predicted_position(x, y, pointer.event_time)
x_history.remove_first
x_history.add_last(x)
y_history.remove_first
y_history.add_last(y)
time_history.remove_first
time_history.add_last(pointer.event_time)
t3 := mean(time_history)
if t3 /= t2 then
update_predicted_position(mean(x_history), mean(y_history), t3)
end
message := once ""
message.copy(button_message_header)
message.append(once " button=")
pointer.button_number.append_in(message)
message.append(once " status=")
if pressed then
message.append(once "down")
else
message.append(once "up")
end
presure := pointer.motion_axis_data(3)
print_data_in(message, x, y, presure, pointer.motion_axis_data(4),
pointer.motion_axis_data(5),
pointer.motion_axis_data(6), pointer.event_time,
once "unchanged")
xinput_ivy.ivy.send_message(message)
end
proximity(in: BOOLEAN; pointer: X_INPUT_DEVICE) is
local
x, y: INTEGER
t3: REAL_64
message, proximity_status: STRING
do
x := pointer.proximity_axis_data(1)
y := pointer.proximity_axis_data(2)
--update_predicted_position(x, y, pointer.event_time)
--*** exploiter le cas proximity in=True pour vider l'historique
x_history.remove_first
x_history.add_last(x)
y_history.remove_first
y_history.add_last(y)
time_history.remove_first
time_history.add_last(pointer.event_time)
t3 := mean(time_history)
if t3 /= t2 then
update_predicted_position(mean(x_history), mean(y_history), t3)
end
if in then
proximity_status := once "In"
else
proximity_status := once "Out"
end
message := once ""
message.copy(pointer_message_header)
print_data_in(message, x, y, pointer.proximity_axis_data(3),
pointer.proximity_axis_data(4),
pointer.proximity_axis_data(5),
pointer.proximity_axis_data(6),
pointer.event_time, proximity_status)
xinput_ivy.ivy.send_message(message)
end
predicted_x, predicted_y: INTEGER
int_update_predicted_position(x3, y3, t3: INTEGER) is
local
dt: REAL -- delta time, temporary value
s3x, s3y, s3: REAL -- speed beetween P2 and P3
s3xn, s3yn: REAL -- normalized speed between point P2 and P3
a3x, a3y: REAL -- acceleration at point P2 (needs P3!)
a3xm, a3ym: REAL -- a3 value in mobile coordinates (s2 vector)
a4x, a4y: REAL -- a3 value rotated by (s2 vector, s3 vector) angle
do
dt := t3 - t2
--s3x := (x3 - x2).to_real_64 / dt
--s3y := (y3 - y2).to_real_64 / dt
s3 := (s3x * s3x + s3y * s3y).sqrt
s3xn := s3x / s3
s3yn := s3y / s3
dt := (t3 - t1) / 2
a3x := (s3x - s2x) / dt
a3y := (s3y - s2y) / dt
a3xm := a3x * s2xn + a3y * s2yn
a3ym := -a3x * s2yn + a3y * s2xn
a4x := s3xn * a3xm - s3yn * a3ym
a4y := s3yn * a3xm + s3xn * a3ym
dt := (t3 - t2 + prediction_time) / 2
predicted_x := x3 + (prediction_time * (s3x + a4x * dt)).force_to_integer_32
predicted_y := y3 + (prediction_time * (s3y + a4y * dt)).force_to_integer_32
if (prediction_time * (s3y + a4y * dt)).abs > 5300 then
io.put_string(once "x2=" + x2.to_string + once " y2=" + y2.to_string)
io.put_string(once " x3=" + x3.to_string + once " y3=" + y3.to_string)
io.put_string(once " s3x=" + s3x.to_string + once " s3y=" + s3y.to_string)
io.put_string(once " a3x=" + a3x.to_string + once " a3y=" + a3y.to_string)
io.put_string(once " a3xm=" + a3xm.to_string + once " a3ym=" + a3ym.to_string)
io.put_string(once " a4x=" + a4x.to_string + once " a4y=" + a4y.to_string)
io.put_string(once " dt=" + dt.to_string)
io.put_string(once " ****")
io.put_new_line
end
-- Shift values
x2 := x3; y2 := y3
s2x := s3x; s2y := s3y
s2xn := s3xn; s2yn := s3yn
t1 := t2; t2 := t3
end
update_predicted_position(x3, y3, t3: REAL) is
require
t2 /= t3
local
dt: REAL -- delta time, temporary value
s3x, s3y, s3: REAL -- speed beetween P2 and P3
s3xn, s3yn: REAL -- normalized speed between point P2 and P3
a3x, a3y: REAL -- acceleration at point P2 (needs P3!)
a3xm, a3ym: REAL -- a3 value in mobile coordinates (s2 vector)
a4x, a4y: REAL -- a3 value rotated by (s2 vector, s3 vector) angle
do
dt := t3 - t2
s3x := (x3 - x2) / dt
s3y := (y3 - y2) / dt
s3 := (s3x * s3x + s3y * s3y).sqrt
if s3 /= 0 then
s3xn := s3x / s3
s3yn := s3y / s3
end
dt := (t3 - t1) / 2
a3x := (s3x - s2x) / dt
a3y := (s3y - s2y) / dt
a3xm := a3x * s2xn + a3y * s2yn
a3ym := -a3x * s2yn + a3y * s2xn
a4x := s3xn * a3xm - s3yn * a3ym
a4y := s3yn * a3xm + s3xn * a3ym
--dt := (t3 - t2 + prediction_time) / 2
-- acceleration is constant
-- predicted_x := (x3 + prediction_time * (s3x + a3x * dt)).force_to_integer_32
-- predicted_y := (y3 + prediction_time * (s3y + a3y * dt)).force_to_integer_32
-- acceleration is constant in mobile coordinates
-- predicted_x := (x3 + prediction_time * (s3x + a4x * dt)).force_to_integer_32
-- predicted_y := (y3 + prediction_time * (s3y + a4y * dt)).force_to_integer_32
-- acceleration variation is constant
-- a4x := a3x + (a3x - a2x) * (prediction_time + t2 - t1) / (t3 + t1 - t2 - t0)
-- a4y := a3y + (a3y - a2y) * (prediction_time + t2 - t1) / (t3 + t1 - t2 - t0)
-- predicted_x := (x3 + prediction_time * (s3x + a4x * dt)).force_to_integer_32
-- predicted_y := (y3 + prediction_time * (s3y + a4y * dt)).force_to_integer_32
-- half constant in mobile coordinates, half constant variation
dt := (prediction_time + t2 - t1) / (t3 + t1 - t2 - t0)
a4x := (a4x + a3x + (a3x - a2x) * dt) / 2
a4y := (a4y + a3y + (a3y - a2y) * dt) / 2
dt := (t3 - t2 + prediction_time) / 2
predicted_x := (x3 + prediction_time * (s3x + a4x * dt)).force_to_integer_32
predicted_y := (y3 + prediction_time * (s3y + a4y * dt)).force_to_integer_32
-- Shift values
x2 := x3; y2 := y3
s2x := s3x; s2y := s3y
s2xn := s3xn; s2yn := s3yn
a2x := a3x; a2y := a3y
t0 := t1; t1 := t2; t2 := t3
end
a2x, a2y: REAL
t0: REAL
--x2, y2: INTEGER -- point P2 coordinates
x2, y2: REAL -- point P2 coordinates
s2x, s2y: REAL -- speed beetween P1 and P2
s2xn, s2yn: REAL -- normalized speed between P1 and P2
--t1, t2: INTEGER -- timestamp for points P1 and P2
t1, t2: REAL -- timestamp for points P1 and P2
end
|